Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914059076> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2914059076 abstract "It is our great pleasure to welcome you to the 2017 ACM Conference on Knowledge Discovery and Data Mining -- KDD 2017. We hope that the content and the professional networking opportunities at KDD 2017 will help you to succeed professionally by enabling you to: identify new technology trends; learn from contributed papers, presentations, and posters; discover new tools, processes and practices; identify new job opportunities; and hire new team members. The terms Data Science, Data Mining and Big Data have, in the last few years, grown out of research labs and gained presence in the media and in everyday conversations. We also hear these terms on social media and from decision makers at various level of governments and corporations. The impact of these technologies is felt in almost every walk of life. Importantly, the current rapid progress in data science is facilitated by the timely sharing of newly discovered and developed representations and algorithms between those working in research and those interested in industrial deployment. It is the hallmark of KDD conferences in the past that they have been the bridge between theory and practise, the great facilitator and catalyst for this exchange. Researchers and practitioners meet in person and interact in a meaningful way over several days. The conference program, with its three parallel tracks - the Research Track, the Applied Data Science Track and the Applied Invited Speakers Track - brings the two groups together. Participants are welcome to freely attend any track, and the events common for all tracks. The conference this year continues with its tradition of a strong tutorial and workshop program on leading edge issues of data mining during the first two days of the program. The last three days are devoted to contributed technical papers, describing both novel, important research contributions, and deployed, innovative solutions. Three keynote talks, by Cynthia Dwork, Bin Yu, and Renée J. Miller touch on some of the hard, emerging issues before the field of data mining. With a growing industry around AI assistants, our KDD Panel brings together industry experts in this field to spawn discussions and an exchanges of ideas. We have an outstanding lineup of industry speakers sharing their experiences and expertise in deploying industrial data mining solutions. We continue a strong hands-on tutorial program, in which participants will learn how to use practical data science tools. In order to broaden the impact of KDD and to increase the participation of attendees who would greatly benefit from the conference but would have otherwise found it financially challenging to attend, we reserved a substantial budget for travel grants. KDD 2017 awarded a record USD 145k for student travel and also set aside USD 25k to enable smaller startups to attend. With the new Meet the Experts sessions, KDD 2017 also gives researchers and practitioners a unique opportunity to form professional networks and to share their perspectives with others interested in the various aspects of data science. We hope that the KDD 2017 conference will serve as a meeting ground for researchers, practitioners, funding agencies and investors to help create new algorithms and commercial products." @default.
- W2914059076 created "2019-02-21" @default.
- W2914059076 creator A5025508406 @default.
- W2914059076 creator A5042893723 @default.
- W2914059076 creator A5084034136 @default.
- W2914059076 date "2017-08-13" @default.
- W2914059076 modified "2023-09-27" @default.
- W2914059076 title "Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining" @default.
- W2914059076 doi "https://doi.org/10.1145/3097983" @default.
- W2914059076 hasPublicationYear "2017" @default.
- W2914059076 type Work @default.
- W2914059076 sameAs 2914059076 @default.
- W2914059076 citedByCount "9" @default.
- W2914059076 countsByYear W29140590762021 @default.
- W2914059076 countsByYear W29140590762022 @default.
- W2914059076 countsByYear W29140590762023 @default.
- W2914059076 crossrefType "proceedings" @default.
- W2914059076 hasAuthorship W2914059076A5025508406 @default.
- W2914059076 hasAuthorship W2914059076A5042893723 @default.
- W2914059076 hasAuthorship W2914059076A5084034136 @default.
- W2914059076 hasConcept C100776233 @default.
- W2914059076 hasConcept C105339364 @default.
- W2914059076 hasConcept C111919701 @default.
- W2914059076 hasConcept C120567893 @default.
- W2914059076 hasConcept C124101348 @default.
- W2914059076 hasConcept C126322002 @default.
- W2914059076 hasConcept C136764020 @default.
- W2914059076 hasConcept C154945302 @default.
- W2914059076 hasConcept C15744967 @default.
- W2914059076 hasConcept C169760540 @default.
- W2914059076 hasConcept C17744445 @default.
- W2914059076 hasConcept C199539241 @default.
- W2914059076 hasConcept C2522767166 @default.
- W2914059076 hasConcept C2776831358 @default.
- W2914059076 hasConcept C2777113389 @default.
- W2914059076 hasConcept C41008148 @default.
- W2914059076 hasConcept C518677369 @default.
- W2914059076 hasConcept C71924100 @default.
- W2914059076 hasConcept C75684735 @default.
- W2914059076 hasConceptScore W2914059076C100776233 @default.
- W2914059076 hasConceptScore W2914059076C105339364 @default.
- W2914059076 hasConceptScore W2914059076C111919701 @default.
- W2914059076 hasConceptScore W2914059076C120567893 @default.
- W2914059076 hasConceptScore W2914059076C124101348 @default.
- W2914059076 hasConceptScore W2914059076C126322002 @default.
- W2914059076 hasConceptScore W2914059076C136764020 @default.
- W2914059076 hasConceptScore W2914059076C154945302 @default.
- W2914059076 hasConceptScore W2914059076C15744967 @default.
- W2914059076 hasConceptScore W2914059076C169760540 @default.
- W2914059076 hasConceptScore W2914059076C17744445 @default.
- W2914059076 hasConceptScore W2914059076C199539241 @default.
- W2914059076 hasConceptScore W2914059076C2522767166 @default.
- W2914059076 hasConceptScore W2914059076C2776831358 @default.
- W2914059076 hasConceptScore W2914059076C2777113389 @default.
- W2914059076 hasConceptScore W2914059076C41008148 @default.
- W2914059076 hasConceptScore W2914059076C518677369 @default.
- W2914059076 hasConceptScore W2914059076C71924100 @default.
- W2914059076 hasConceptScore W2914059076C75684735 @default.
- W2914059076 hasLocation W29140590761 @default.
- W2914059076 hasOpenAccess W2914059076 @default.
- W2914059076 hasPrimaryLocation W29140590761 @default.
- W2914059076 hasRelatedWork W2285624661 @default.
- W2914059076 hasRelatedWork W2471546600 @default.
- W2914059076 hasRelatedWork W2748952813 @default.
- W2914059076 hasRelatedWork W2999459970 @default.
- W2914059076 hasRelatedWork W3114771222 @default.
- W2914059076 hasRelatedWork W3123614446 @default.
- W2914059076 hasRelatedWork W3175948276 @default.
- W2914059076 hasRelatedWork W4287903834 @default.
- W2914059076 hasRelatedWork W4299638067 @default.
- W2914059076 hasRelatedWork W4309949240 @default.
- W2914059076 isParatext "false" @default.
- W2914059076 isRetracted "false" @default.
- W2914059076 magId "2914059076" @default.
- W2914059076 workType "paratext" @default.