Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914066305> ?p ?o ?g. }
- W2914066305 endingPage "42" @default.
- W2914066305 startingPage "26" @default.
- W2914066305 abstract "Spectral clustering algorithm (SC) has recently received great attention for its high performance in large-scale data clustering and simplicity in implementation. However, previous studies have demonstrated that the commonly used distance measures in SC cannot simultaneously consider global and local consistencies and are sensitive to various noises. As a result, the obtained similarity matrices are unable to capture the actual data structure and thus produce poor clustering results, especially when the data exhibits nonlinear and local manifold structures characteristics. In order to address those limitations, we present a spectral clustering algorithm using density-sensitive distance measure with global and local consistencies in this paper. In the presented algorithm, a novel manifold distance with exponential term and scaling factor is introduced as the pairwise similarity measure. By modifying its exponential term and scaling factor, we can flexibly adjust the ratio of the similarities between the data within the same manifold to the similarities between the data across different manifolds. This flexible adjustment is beneficial to the obtained similarity matrix more accurately reflecting the global and local consistencies of data structures. In addition, to eliminate the effect of noises on the clustering performance, we also incorporate the relative density sensitive term into the distance measure to take into account the local distribution characteristics of the data. Finally, to further improve clustering performance, we provide the SC-based k value determination method for k nearest neighbors (KNN) graph. In the experimental part, the effect of parameters on the performance of the proposed technique is discussed and some suggestions about the determination of the parameters are given. Theoretical analysis and experimental results on several synthetic datasets, UCI benchmark datasets and generated large MNIST handwritten digits datasets demonstrate that the proposed approach is superior to other existing spectral clustering techniques with good robustness." @default.
- W2914066305 created "2019-02-21" @default.
- W2914066305 creator A5001015743 @default.
- W2914066305 creator A5005912530 @default.
- W2914066305 creator A5062748081 @default.
- W2914066305 creator A5069049434 @default.
- W2914066305 creator A5076626946 @default.
- W2914066305 creator A5082746577 @default.
- W2914066305 date "2019-04-01" @default.
- W2914066305 modified "2023-10-16" @default.
- W2914066305 title "Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies" @default.
- W2914066305 cites W1457719682 @default.
- W2914066305 cites W1976336580 @default.
- W2914066305 cites W2038810627 @default.
- W2914066305 cites W2045727533 @default.
- W2914066305 cites W2052005199 @default.
- W2914066305 cites W2072708122 @default.
- W2914066305 cites W2088911135 @default.
- W2914066305 cites W2097341236 @default.
- W2914066305 cites W2165835468 @default.
- W2914066305 cites W221829734 @default.
- W2914066305 cites W2256361316 @default.
- W2914066305 cites W2276155953 @default.
- W2914066305 cites W2313190452 @default.
- W2914066305 cites W2331674637 @default.
- W2914066305 cites W2345189929 @default.
- W2914066305 cites W2346765529 @default.
- W2914066305 cites W2479922061 @default.
- W2914066305 cites W2494395359 @default.
- W2914066305 cites W2520964758 @default.
- W2914066305 cites W2529674387 @default.
- W2914066305 cites W2532852010 @default.
- W2914066305 cites W2566293917 @default.
- W2914066305 cites W2573546209 @default.
- W2914066305 cites W2573864470 @default.
- W2914066305 cites W2587242561 @default.
- W2914066305 cites W2588831500 @default.
- W2914066305 cites W2592474909 @default.
- W2914066305 cites W2594857575 @default.
- W2914066305 cites W2596052762 @default.
- W2914066305 cites W2611926148 @default.
- W2914066305 cites W2728946944 @default.
- W2914066305 cites W2734665420 @default.
- W2914066305 cites W2742662862 @default.
- W2914066305 cites W2745258065 @default.
- W2914066305 cites W2767460341 @default.
- W2914066305 cites W2771031721 @default.
- W2914066305 doi "https://doi.org/10.1016/j.knosys.2019.01.026" @default.
- W2914066305 hasPublicationYear "2019" @default.
- W2914066305 type Work @default.
- W2914066305 sameAs 2914066305 @default.
- W2914066305 citedByCount "22" @default.
- W2914066305 countsByYear W29140663052019 @default.
- W2914066305 countsByYear W29140663052020 @default.
- W2914066305 countsByYear W29140663052021 @default.
- W2914066305 countsByYear W29140663052022 @default.
- W2914066305 countsByYear W29140663052023 @default.
- W2914066305 crossrefType "journal-article" @default.
- W2914066305 hasAuthorship W2914066305A5001015743 @default.
- W2914066305 hasAuthorship W2914066305A5005912530 @default.
- W2914066305 hasAuthorship W2914066305A5062748081 @default.
- W2914066305 hasAuthorship W2914066305A5069049434 @default.
- W2914066305 hasAuthorship W2914066305A5076626946 @default.
- W2914066305 hasAuthorship W2914066305A5082746577 @default.
- W2914066305 hasConcept C103278499 @default.
- W2914066305 hasConcept C105611402 @default.
- W2914066305 hasConcept C11413529 @default.
- W2914066305 hasConcept C115961682 @default.
- W2914066305 hasConcept C124101348 @default.
- W2914066305 hasConcept C153180895 @default.
- W2914066305 hasConcept C154945302 @default.
- W2914066305 hasConcept C184898388 @default.
- W2914066305 hasConcept C2524010 @default.
- W2914066305 hasConcept C2776517306 @default.
- W2914066305 hasConcept C2780009758 @default.
- W2914066305 hasConcept C33923547 @default.
- W2914066305 hasConcept C41008148 @default.
- W2914066305 hasConcept C73555534 @default.
- W2914066305 hasConcept C99844830 @default.
- W2914066305 hasConceptScore W2914066305C103278499 @default.
- W2914066305 hasConceptScore W2914066305C105611402 @default.
- W2914066305 hasConceptScore W2914066305C11413529 @default.
- W2914066305 hasConceptScore W2914066305C115961682 @default.
- W2914066305 hasConceptScore W2914066305C124101348 @default.
- W2914066305 hasConceptScore W2914066305C153180895 @default.
- W2914066305 hasConceptScore W2914066305C154945302 @default.
- W2914066305 hasConceptScore W2914066305C184898388 @default.
- W2914066305 hasConceptScore W2914066305C2524010 @default.
- W2914066305 hasConceptScore W2914066305C2776517306 @default.
- W2914066305 hasConceptScore W2914066305C2780009758 @default.
- W2914066305 hasConceptScore W2914066305C33923547 @default.
- W2914066305 hasConceptScore W2914066305C41008148 @default.
- W2914066305 hasConceptScore W2914066305C73555534 @default.
- W2914066305 hasConceptScore W2914066305C99844830 @default.
- W2914066305 hasFunder F4320321620 @default.
- W2914066305 hasFunder F4320326687 @default.
- W2914066305 hasLocation W29140663051 @default.
- W2914066305 hasOpenAccess W2914066305 @default.