Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914086750> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2914086750 abstract "Link prediction refers to estimating the likelihood of a link appearing in the future based on the current status of a graph. Link prediction problem applications in various domains such as bioinformatics, social network analysis, cybersecurity and e-commerce. Some of these graphs are massive and are constantly evolving. Many applications require these graph streams to be processed them in real-time, to predict the link based on the most recent information as the graph features may change over time. Existing approaches to process large graphs for link prediction is non-trivial due to the following reasons: 1) Graphs required to predict the links are too large to be stored in a single RAM. Link prediction on these large graphs is expensive in terms of computation resources and time required to perform link prediction, 2) Sketch-based approaches are not suitable in applications where accuracy is critical (such as analyzing criminal social networks or supply chain networks) and 3) Sketch-based approaches also fail to handle dynamic graphs, where edges are not only added, but also removed. This results in changes to the graph topology, making the features previously computed to be obsolete. Distributed data stream frameworks such as Apache Flink could be potentially used for distributed graph processing. However, there are no techniques to handle link prediction on distributed graph streams. In this paper, we consider three fundamental, neighborhood-based link prediction measures, Jaccard coefficient, Preferential attachment, and common neighbors and enable an accurate measurement of them to address link prediction problem in dynamic graph streams. We propose a neighborhood-centric graph processing approach to handle graphs that exploits the locality, parallelism, and incremental computation of existing distributed frameworks to calculate these graph features with exact results. We perform experimental studies on various real-world graph streams. The results demonstrate that our graph measures are accurate and are more efficient than the existing vertex-centric approaches to graph processing." @default.
- W2914086750 created "2019-02-21" @default.
- W2914086750 creator A5000977167 @default.
- W2914086750 creator A5023699325 @default.
- W2914086750 creator A5060586529 @default.
- W2914086750 creator A5062103332 @default.
- W2914086750 creator A5084607456 @default.
- W2914086750 date "2018-12-01" @default.
- W2914086750 modified "2023-09-27" @default.
- W2914086750 title "Distributed Real Time Link Prediction on Graph Streams" @default.
- W2914086750 cites W1982003698 @default.
- W2914086750 cites W2016289973 @default.
- W2914086750 cites W2022994251 @default.
- W2914086750 cites W2025622191 @default.
- W2914086750 cites W2056782561 @default.
- W2914086750 cites W2061354107 @default.
- W2914086750 cites W2080234606 @default.
- W2914086750 cites W2107933610 @default.
- W2914086750 cites W2111350126 @default.
- W2914086750 cites W2112421114 @default.
- W2914086750 cites W2129129488 @default.
- W2914086750 cites W2146838049 @default.
- W2914086750 cites W2170616854 @default.
- W2914086750 cites W217817341 @default.
- W2914086750 cites W2399708603 @default.
- W2914086750 cites W2440288152 @default.
- W2914086750 cites W3101959685 @default.
- W2914086750 cites W4206152408 @default.
- W2914086750 cites W4232932184 @default.
- W2914086750 doi "https://doi.org/10.1109/bigdata.2018.8621934" @default.
- W2914086750 hasPublicationYear "2018" @default.
- W2914086750 type Work @default.
- W2914086750 sameAs 2914086750 @default.
- W2914086750 citedByCount "6" @default.
- W2914086750 countsByYear W29140867502019 @default.
- W2914086750 countsByYear W29140867502020 @default.
- W2914086750 countsByYear W29140867502022 @default.
- W2914086750 crossrefType "proceedings-article" @default.
- W2914086750 hasAuthorship W2914086750A5000977167 @default.
- W2914086750 hasAuthorship W2914086750A5023699325 @default.
- W2914086750 hasAuthorship W2914086750A5060586529 @default.
- W2914086750 hasAuthorship W2914086750A5062103332 @default.
- W2914086750 hasAuthorship W2914086750A5084607456 @default.
- W2914086750 hasConcept C11413529 @default.
- W2914086750 hasConcept C1173588 @default.
- W2914086750 hasConcept C119857082 @default.
- W2914086750 hasConcept C124101348 @default.
- W2914086750 hasConcept C132525143 @default.
- W2914086750 hasConcept C2778753846 @default.
- W2914086750 hasConcept C2779231336 @default.
- W2914086750 hasConcept C31258907 @default.
- W2914086750 hasConcept C41008148 @default.
- W2914086750 hasConcept C80444323 @default.
- W2914086750 hasConcept C89198739 @default.
- W2914086750 hasConceptScore W2914086750C11413529 @default.
- W2914086750 hasConceptScore W2914086750C1173588 @default.
- W2914086750 hasConceptScore W2914086750C119857082 @default.
- W2914086750 hasConceptScore W2914086750C124101348 @default.
- W2914086750 hasConceptScore W2914086750C132525143 @default.
- W2914086750 hasConceptScore W2914086750C2778753846 @default.
- W2914086750 hasConceptScore W2914086750C2779231336 @default.
- W2914086750 hasConceptScore W2914086750C31258907 @default.
- W2914086750 hasConceptScore W2914086750C41008148 @default.
- W2914086750 hasConceptScore W2914086750C80444323 @default.
- W2914086750 hasConceptScore W2914086750C89198739 @default.
- W2914086750 hasLocation W29140867501 @default.
- W2914086750 hasOpenAccess W2914086750 @default.
- W2914086750 hasPrimaryLocation W29140867501 @default.
- W2914086750 hasRelatedWork W1527309986 @default.
- W2914086750 hasRelatedWork W1554204406 @default.
- W2914086750 hasRelatedWork W2885508969 @default.
- W2914086750 hasRelatedWork W3167673482 @default.
- W2914086750 hasRelatedWork W3216930530 @default.
- W2914086750 hasRelatedWork W42759628 @default.
- W2914086750 hasRelatedWork W4285309666 @default.
- W2914086750 hasRelatedWork W4310879833 @default.
- W2914086750 hasRelatedWork W656971665 @default.
- W2914086750 hasRelatedWork W2788172935 @default.
- W2914086750 isParatext "false" @default.
- W2914086750 isRetracted "false" @default.
- W2914086750 magId "2914086750" @default.
- W2914086750 workType "article" @default.