Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914093099> ?p ?o ?g. }
- W2914093099 endingPage "e0211413" @default.
- W2914093099 startingPage "e0211413" @default.
- W2914093099 abstract "Background Exhaled aerosols from lungs have unique patterns, and their variation can be correlated to the underlying lung structure and associated abnormities. However, it is challenging to characterize such aerosol patterns and differentiate their difference because of their complexity. This challenge is even greater for small airway diseases, where the disturbance signals are weak. Objectives and methods The objective of this study is exploiting different feature extraction algorithms to develop a practical classifier to diagnose obstructive lung diseases using exhaled aerosol images. These include proper orthogonal decomposition (POD), principal component analysis (PCA), dynamic mode decomposition (DMD), and DMD with control (DMDC). Aerosol images were generated via physiology-based simulations in one normal and four diseased airway models in G7-9 bronchioles. The image data were classified using both the support vector machine (SVM) and random forest (RF) algorithms. The effectiveness of different features was evaluated by classification accuracy and misclassification rate. Findings Results show a significantly higher performance using dynamic feature extractions (DMD and DMDC) than static algorithms (POD and PCA). Adding the control variables to DMD further improved classification accuracy. Comparing the classification methods, RF persistently outperformed SVM for all types of features considered. While the performance of RF constantly increased with the number of features retained, the performance of SVM peaked at 50 and decreased thereafter. The 5-class classification accuracy was 94.8% using the DMDC-RF model and 93.0% using the DMD-RF model, both of which were higher than 87.0% in the previous study that used fractal dimension features. Conclusion Considering that disease progression is inherently a dynamic process, DMD(C)-based feature extraction preserves temporal information and is preferred over POD and PCA. Compared with hand-crafted features like fractals, feature extraction by DMD and DMDC is automatic and more accurate." @default.
- W2914093099 created "2019-02-21" @default.
- W2914093099 creator A5003276799 @default.
- W2914093099 creator A5079405950 @default.
- W2914093099 date "2019-01-31" @default.
- W2914093099 modified "2023-09-27" @default.
- W2914093099 title "Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning" @default.
- W2914093099 cites W1515686529 @default.
- W2914093099 cites W1635210704 @default.
- W2914093099 cites W1723433682 @default.
- W2914093099 cites W1860903952 @default.
- W2914093099 cites W1964940342 @default.
- W2914093099 cites W1968964192 @default.
- W2914093099 cites W1977296795 @default.
- W2914093099 cites W1981193003 @default.
- W2914093099 cites W1995769879 @default.
- W2914093099 cites W1996745062 @default.
- W2914093099 cites W1997574431 @default.
- W2914093099 cites W1998804690 @default.
- W2914093099 cites W2008918656 @default.
- W2914093099 cites W2016717881 @default.
- W2914093099 cites W2026987057 @default.
- W2914093099 cites W2042794616 @default.
- W2914093099 cites W2051246699 @default.
- W2914093099 cites W2051993919 @default.
- W2914093099 cites W2057422983 @default.
- W2914093099 cites W2057594692 @default.
- W2914093099 cites W2059316647 @default.
- W2914093099 cites W2064274273 @default.
- W2914093099 cites W2076574086 @default.
- W2914093099 cites W2089570507 @default.
- W2914093099 cites W2098382127 @default.
- W2914093099 cites W2112823474 @default.
- W2914093099 cites W2128728535 @default.
- W2914093099 cites W2137476312 @default.
- W2914093099 cites W2137640349 @default.
- W2914093099 cites W2146562833 @default.
- W2914093099 cites W2147279870 @default.
- W2914093099 cites W2149286979 @default.
- W2914093099 cites W2156398782 @default.
- W2914093099 cites W2164692566 @default.
- W2914093099 cites W2164954534 @default.
- W2914093099 cites W2165436165 @default.
- W2914093099 cites W2168222921 @default.
- W2914093099 cites W2170054433 @default.
- W2914093099 cites W2171539909 @default.
- W2914093099 cites W2208323728 @default.
- W2914093099 cites W2305422646 @default.
- W2914093099 cites W2592929672 @default.
- W2914093099 cites W2615067706 @default.
- W2914093099 cites W2624699030 @default.
- W2914093099 cites W2731899572 @default.
- W2914093099 cites W2788417788 @default.
- W2914093099 cites W2809254203 @default.
- W2914093099 cites W2911964244 @default.
- W2914093099 cites W3099803807 @default.
- W2914093099 cites W4239510810 @default.
- W2914093099 doi "https://doi.org/10.1371/journal.pone.0211413" @default.
- W2914093099 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6354993" @default.
- W2914093099 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30703132" @default.
- W2914093099 hasPublicationYear "2019" @default.
- W2914093099 type Work @default.
- W2914093099 sameAs 2914093099 @default.
- W2914093099 citedByCount "18" @default.
- W2914093099 countsByYear W29140930992019 @default.
- W2914093099 countsByYear W29140930992020 @default.
- W2914093099 countsByYear W29140930992021 @default.
- W2914093099 countsByYear W29140930992022 @default.
- W2914093099 countsByYear W29140930992023 @default.
- W2914093099 crossrefType "journal-article" @default.
- W2914093099 hasAuthorship W2914093099A5003276799 @default.
- W2914093099 hasAuthorship W2914093099A5079405950 @default.
- W2914093099 hasBestOaLocation W29140930991 @default.
- W2914093099 hasConcept C119857082 @default.
- W2914093099 hasConcept C12267149 @default.
- W2914093099 hasConcept C153180895 @default.
- W2914093099 hasConcept C154945302 @default.
- W2914093099 hasConcept C169258074 @default.
- W2914093099 hasConcept C178790620 @default.
- W2914093099 hasConcept C185592680 @default.
- W2914093099 hasConcept C27438332 @default.
- W2914093099 hasConcept C2777032711 @default.
- W2914093099 hasConcept C2779345167 @default.
- W2914093099 hasConcept C3020341094 @default.
- W2914093099 hasConcept C33070731 @default.
- W2914093099 hasConcept C41008148 @default.
- W2914093099 hasConcept C52622490 @default.
- W2914093099 hasConcept C70518039 @default.
- W2914093099 hasConcept C86803240 @default.
- W2914093099 hasConceptScore W2914093099C119857082 @default.
- W2914093099 hasConceptScore W2914093099C12267149 @default.
- W2914093099 hasConceptScore W2914093099C153180895 @default.
- W2914093099 hasConceptScore W2914093099C154945302 @default.
- W2914093099 hasConceptScore W2914093099C169258074 @default.
- W2914093099 hasConceptScore W2914093099C178790620 @default.
- W2914093099 hasConceptScore W2914093099C185592680 @default.
- W2914093099 hasConceptScore W2914093099C27438332 @default.
- W2914093099 hasConceptScore W2914093099C2777032711 @default.