Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914094836> ?p ?o ?g. }
- W2914094836 endingPage "225" @default.
- W2914094836 startingPage "225" @default.
- W2914094836 abstract "Accurate and continuous monitoring of the production of arid ecosystems is of great importance for global and regional carbon cycle estimation. However, the magnitude of carbon sequestration in arid regions and its contribution to the global carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in arid ecosystems. The Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) product provides worldwide high-frequency monitoring of terrestrial GPP. While there have been a large number of studies to validate the MODIS GPP product with ground-based measurements over a range of biome types. Few studies have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems, especially for the newly released Collection 6 GPP products, whose resolution have been improved from 1000 m to 500 m. Thus, this study examined the performance of MODIS-derived GPP by compared with eddy covariance (EC)-observed GPP at different timescales for the main ecosystems in arid and semi-arid regions of China. Meanwhile, we also improved the estimation of MODIS GPP by using in situ meteorological forcing data and optimization of biome-specific parameters with the Bayesian approach. Our results revealed that the current MOD17A2H GPP algorithm could, on the whole, capture the broad trends of GPP at eight-day time scales for the most investigated sites. However, GPP was underestimated in some ecosystems in the arid region, especially for the irrigated cropland and forest ecosystems (with R2 = 0.80, RMSE = 2.66 gC/m2/day and R2 = 0.53, RMSE = 2.12 gC/m2/day, respectively). At the eight-day time scale, the slope of the original MOD17A2H GPP relative to the EC-based GPP was only 0.49, which showed significant underestimation compared with tower-based GPP. However, after using in situ meteorological data to optimize the biome-based parameters of MODIS GPP algorithm, the model could explain 91% of the EC-observed GPP of the sites. Our study revealed that the current MODIS GPP model works well after improving the maximum light-use efficiency (εmax or LUEmax), as well as the temperature and water-constrained parameters of the main ecosystems in the arid region. Nevertheless, there are still large uncertainties surrounding GPP modelling in dryland ecosystems, especially for desert ecosystems. Further improvements in GPP simulation in dryland ecosystems are needed in future studies, for example, improvements of remote sensing products and the GPP estimation algorithm, implementation of data-driven methods, or physiology models." @default.
- W2914094836 created "2019-02-21" @default.
- W2914094836 creator A5005821943 @default.
- W2914094836 creator A5010792091 @default.
- W2914094836 creator A5040780405 @default.
- W2914094836 creator A5084831990 @default.
- W2914094836 date "2019-01-22" @default.
- W2914094836 modified "2023-10-07" @default.
- W2914094836 title "Improving Estimation of Gross Primary Production in Dryland Ecosystems by a Model-Data Fusion Approach" @default.
- W2914094836 cites W1490845441 @default.
- W2914094836 cites W1514791894 @default.
- W2914094836 cites W1590396946 @default.
- W2914094836 cites W1840265963 @default.
- W2914094836 cites W1910050210 @default.
- W2914094836 cites W1930021590 @default.
- W2914094836 cites W1965660907 @default.
- W2914094836 cites W1967559713 @default.
- W2914094836 cites W1969801270 @default.
- W2914094836 cites W1970787495 @default.
- W2914094836 cites W1992821384 @default.
- W2914094836 cites W1995737178 @default.
- W2914094836 cites W2005487163 @default.
- W2914094836 cites W2022727148 @default.
- W2914094836 cites W2024373734 @default.
- W2914094836 cites W2028687953 @default.
- W2914094836 cites W2036346241 @default.
- W2914094836 cites W2037198049 @default.
- W2914094836 cites W2042692910 @default.
- W2914094836 cites W2051610466 @default.
- W2914094836 cites W2052648234 @default.
- W2914094836 cites W2056760934 @default.
- W2914094836 cites W2063923547 @default.
- W2914094836 cites W2079759406 @default.
- W2914094836 cites W2107009275 @default.
- W2914094836 cites W2114059473 @default.
- W2914094836 cites W2118102799 @default.
- W2914094836 cites W2120638923 @default.
- W2914094836 cites W2120924194 @default.
- W2914094836 cites W2124437404 @default.
- W2914094836 cites W2125913175 @default.
- W2914094836 cites W2126479957 @default.
- W2914094836 cites W2126493480 @default.
- W2914094836 cites W2131311436 @default.
- W2914094836 cites W2136253503 @default.
- W2914094836 cites W2138309709 @default.
- W2914094836 cites W2147423506 @default.
- W2914094836 cites W2154700052 @default.
- W2914094836 cites W2155152860 @default.
- W2914094836 cites W2158897782 @default.
- W2914094836 cites W2158960409 @default.
- W2914094836 cites W2168872978 @default.
- W2914094836 cites W2171509917 @default.
- W2914094836 cites W2221482302 @default.
- W2914094836 cites W2269290923 @default.
- W2914094836 cites W2312535521 @default.
- W2914094836 cites W2373000492 @default.
- W2914094836 cites W2470317936 @default.
- W2914094836 cites W2526483905 @default.
- W2914094836 cites W2581115296 @default.
- W2914094836 cites W2606551971 @default.
- W2914094836 cites W2611751328 @default.
- W2914094836 cites W2613349105 @default.
- W2914094836 cites W2619110590 @default.
- W2914094836 cites W2803025004 @default.
- W2914094836 cites W2809747573 @default.
- W2914094836 cites W839400859 @default.
- W2914094836 doi "https://doi.org/10.3390/rs11030225" @default.
- W2914094836 hasPublicationYear "2019" @default.
- W2914094836 type Work @default.
- W2914094836 sameAs 2914094836 @default.
- W2914094836 citedByCount "17" @default.
- W2914094836 countsByYear W29140948362019 @default.
- W2914094836 countsByYear W29140948362020 @default.
- W2914094836 countsByYear W29140948362021 @default.
- W2914094836 countsByYear W29140948362022 @default.
- W2914094836 countsByYear W29140948362023 @default.
- W2914094836 crossrefType "journal-article" @default.
- W2914094836 hasAuthorship W2914094836A5005821943 @default.
- W2914094836 hasAuthorship W2914094836A5010792091 @default.
- W2914094836 hasAuthorship W2914094836A5040780405 @default.
- W2914094836 hasAuthorship W2914094836A5084831990 @default.
- W2914094836 hasBestOaLocation W29140948361 @default.
- W2914094836 hasConcept C110872660 @default.
- W2914094836 hasConcept C127313418 @default.
- W2914094836 hasConcept C127413603 @default.
- W2914094836 hasConcept C142724271 @default.
- W2914094836 hasConcept C146978453 @default.
- W2914094836 hasConcept C150772632 @default.
- W2914094836 hasConcept C18903297 @default.
- W2914094836 hasConcept C19269812 @default.
- W2914094836 hasConcept C205649164 @default.
- W2914094836 hasConcept C24717449 @default.
- W2914094836 hasConcept C2776133958 @default.
- W2914094836 hasConcept C2777007095 @default.
- W2914094836 hasConcept C35187779 @default.
- W2914094836 hasConcept C39432304 @default.
- W2914094836 hasConcept C62649853 @default.
- W2914094836 hasConcept C65680412 @default.