Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914128218> ?p ?o ?g. }
- W2914128218 endingPage "14" @default.
- W2914128218 startingPage "1" @default.
- W2914128218 abstract "Motor fault diagnosis has gained much attention from academic research and industry to guarantee motor reliability. Generally, there exist two major approaches in the feature engineering for motor fault diagnosis: (1) traditional feature learning, which heavily depends on manual feature extraction, is often unable to discover the important underlying representations of faulty motors; (2) state-of-the-art deep learning techniques, which have somewhat improved diagnostic performance, while the intrinsic characteristics of black box and the lack of domain expertise have limited the further improvement. To cover those shortcomings, in this paper, two manual feature learning approaches are embedded into a deep learning algorithm, and thus, a novel fault diagnosis framework is proposed for three-phase induction motors with a hybrid feature learning method, which combines empirical statistical parameters, recurrence quantification analysis (RQA) and long short-term memory (LSTM) neural network. In addition, weighted batch normalization (BN), a modification of BN, is designed to evaluate the contributions of the three feature learning approaches. The proposed method was experimentally demonstrated by carrying out the tests of 8 induction motors with 8 different faulty types. Results show that compared with other popular intelligent diagnosis methods, the proposed method achieves the highest diagnostic accuracy in both the original dataset and the noised dataset. It also verifies that RQA can play a bigger role in real-world applications for its excellent performance in dealing with the noised signals." @default.
- W2914128218 created "2019-02-21" @default.
- W2914128218 creator A5021977927 @default.
- W2914128218 creator A5047160347 @default.
- W2914128218 creator A5051713786 @default.
- W2914128218 creator A5073072532 @default.
- W2914128218 creator A5076458977 @default.
- W2914128218 date "2019-01-27" @default.
- W2914128218 modified "2023-10-15" @default.
- W2914128218 title "Fault Diagnosis of Induction Motors Using Recurrence Quantification Analysis and LSTM with Weighted BN" @default.
- W2914128218 cites W1549386224 @default.
- W2914128218 cites W1889471096 @default.
- W2914128218 cites W1975687401 @default.
- W2914128218 cites W1987581326 @default.
- W2914128218 cites W2053537687 @default.
- W2914128218 cites W2065554891 @default.
- W2914128218 cites W2093573419 @default.
- W2914128218 cites W2132265582 @default.
- W2914128218 cites W2137421215 @default.
- W2914128218 cites W2139575464 @default.
- W2914128218 cites W2324044936 @default.
- W2914128218 cites W2332754758 @default.
- W2914128218 cites W2488793338 @default.
- W2914128218 cites W2580840020 @default.
- W2914128218 cites W2590288147 @default.
- W2914128218 cites W2591055632 @default.
- W2914128218 cites W2740570963 @default.
- W2914128218 cites W2762355244 @default.
- W2914128218 cites W2768988016 @default.
- W2914128218 cites W2773549135 @default.
- W2914128218 cites W2789811186 @default.
- W2914128218 cites W2791517499 @default.
- W2914128218 cites W2792018332 @default.
- W2914128218 cites W2810292802 @default.
- W2914128218 doi "https://doi.org/10.1155/2019/8325218" @default.
- W2914128218 hasPublicationYear "2019" @default.
- W2914128218 type Work @default.
- W2914128218 sameAs 2914128218 @default.
- W2914128218 citedByCount "22" @default.
- W2914128218 countsByYear W29141282182019 @default.
- W2914128218 countsByYear W29141282182020 @default.
- W2914128218 countsByYear W29141282182021 @default.
- W2914128218 countsByYear W29141282182022 @default.
- W2914128218 countsByYear W29141282182023 @default.
- W2914128218 crossrefType "journal-article" @default.
- W2914128218 hasAuthorship W2914128218A5021977927 @default.
- W2914128218 hasAuthorship W2914128218A5047160347 @default.
- W2914128218 hasAuthorship W2914128218A5051713786 @default.
- W2914128218 hasAuthorship W2914128218A5073072532 @default.
- W2914128218 hasAuthorship W2914128218A5076458977 @default.
- W2914128218 hasBestOaLocation W29141282181 @default.
- W2914128218 hasConcept C108583219 @default.
- W2914128218 hasConcept C119599485 @default.
- W2914128218 hasConcept C119857082 @default.
- W2914128218 hasConcept C121332964 @default.
- W2914128218 hasConcept C127313418 @default.
- W2914128218 hasConcept C127413603 @default.
- W2914128218 hasConcept C136886441 @default.
- W2914128218 hasConcept C138885662 @default.
- W2914128218 hasConcept C144024400 @default.
- W2914128218 hasConcept C153180895 @default.
- W2914128218 hasConcept C154945302 @default.
- W2914128218 hasConcept C158622935 @default.
- W2914128218 hasConcept C165205528 @default.
- W2914128218 hasConcept C165801399 @default.
- W2914128218 hasConcept C175551986 @default.
- W2914128218 hasConcept C19165224 @default.
- W2914128218 hasConcept C2776401178 @default.
- W2914128218 hasConcept C2778827112 @default.
- W2914128218 hasConcept C41008148 @default.
- W2914128218 hasConcept C41895202 @default.
- W2914128218 hasConcept C43456602 @default.
- W2914128218 hasConcept C52622490 @default.
- W2914128218 hasConcept C59404180 @default.
- W2914128218 hasConcept C62520636 @default.
- W2914128218 hasConcept C80962145 @default.
- W2914128218 hasConceptScore W2914128218C108583219 @default.
- W2914128218 hasConceptScore W2914128218C119599485 @default.
- W2914128218 hasConceptScore W2914128218C119857082 @default.
- W2914128218 hasConceptScore W2914128218C121332964 @default.
- W2914128218 hasConceptScore W2914128218C127313418 @default.
- W2914128218 hasConceptScore W2914128218C127413603 @default.
- W2914128218 hasConceptScore W2914128218C136886441 @default.
- W2914128218 hasConceptScore W2914128218C138885662 @default.
- W2914128218 hasConceptScore W2914128218C144024400 @default.
- W2914128218 hasConceptScore W2914128218C153180895 @default.
- W2914128218 hasConceptScore W2914128218C154945302 @default.
- W2914128218 hasConceptScore W2914128218C158622935 @default.
- W2914128218 hasConceptScore W2914128218C165205528 @default.
- W2914128218 hasConceptScore W2914128218C165801399 @default.
- W2914128218 hasConceptScore W2914128218C175551986 @default.
- W2914128218 hasConceptScore W2914128218C19165224 @default.
- W2914128218 hasConceptScore W2914128218C2776401178 @default.
- W2914128218 hasConceptScore W2914128218C2778827112 @default.
- W2914128218 hasConceptScore W2914128218C41008148 @default.
- W2914128218 hasConceptScore W2914128218C41895202 @default.
- W2914128218 hasConceptScore W2914128218C43456602 @default.
- W2914128218 hasConceptScore W2914128218C52622490 @default.