Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914218087> ?p ?o ?g. }
- W2914218087 endingPage "1840" @default.
- W2914218087 startingPage "1827" @default.
- W2914218087 abstract "Neural networks and other machine learning approaches have been successfully used to accurately represent atomic interaction potentials derived from computationally demanding electronic structure calculations. Due to their low computational cost, such representations open the possibility for large scale reactive molecular dynamics simulations of processes with bonding situations that cannot be described accurately with traditional empirical force fields. Here, we present a library of functions developed for the implementation of neural network potentials. Written in C++, this library incorporates several strategies resulting in a very high efficiency of neural network potential-energy and force evaluations. Based on this library, we have developed an implementation of the neural network potential within the molecular dynamics package LAMMPS and demonstrate its performance using liquid water as a test system." @default.
- W2914218087 created "2019-02-21" @default.
- W2914218087 creator A5026774143 @default.
- W2914218087 creator A5070681493 @default.
- W2914218087 creator A5081839766 @default.
- W2914218087 date "2019-01-24" @default.
- W2914218087 modified "2023-10-11" @default.
- W2914218087 title "Library-Based <i>LAMMPS</i> Implementation of High-Dimensional Neural Network Potentials" @default.
- W2914218087 cites W1970486977 @default.
- W2914218087 cites W1975997599 @default.
- W2914218087 cites W1976499671 @default.
- W2914218087 cites W1984087004 @default.
- W2914218087 cites W1988227526 @default.
- W2914218087 cites W1991149034 @default.
- W2914218087 cites W2000407885 @default.
- W2914218087 cites W2000456051 @default.
- W2914218087 cites W2000957843 @default.
- W2914218087 cites W2019465613 @default.
- W2914218087 cites W2025444507 @default.
- W2914218087 cites W2029413789 @default.
- W2914218087 cites W2037782625 @default.
- W2914218087 cites W2040331761 @default.
- W2914218087 cites W2043045892 @default.
- W2914218087 cites W2048621586 @default.
- W2914218087 cites W2055526416 @default.
- W2914218087 cites W2058370262 @default.
- W2914218087 cites W2061179540 @default.
- W2914218087 cites W2073197798 @default.
- W2914218087 cites W2074117796 @default.
- W2914218087 cites W2078391824 @default.
- W2914218087 cites W2080131977 @default.
- W2914218087 cites W2083415705 @default.
- W2914218087 cites W2083956694 @default.
- W2914218087 cites W2092157292 @default.
- W2914218087 cites W2104489082 @default.
- W2914218087 cites W2115462899 @default.
- W2914218087 cites W2133959849 @default.
- W2914218087 cites W2137352412 @default.
- W2914218087 cites W2200589053 @default.
- W2914218087 cites W2316524229 @default.
- W2914218087 cites W2398874773 @default.
- W2914218087 cites W2406709014 @default.
- W2914218087 cites W2410722695 @default.
- W2914218087 cites W2470768373 @default.
- W2914218087 cites W2480381460 @default.
- W2914218087 cites W2524276051 @default.
- W2914218087 cites W2542537453 @default.
- W2914218087 cites W2547447472 @default.
- W2914218087 cites W2600764488 @default.
- W2914218087 cites W2606850798 @default.
- W2914218087 cites W26088913 @default.
- W2914218087 cites W2609382539 @default.
- W2914218087 cites W2650911154 @default.
- W2914218087 cites W2742127985 @default.
- W2914218087 cites W2746244909 @default.
- W2914218087 cites W2760908003 @default.
- W2914218087 cites W2766196708 @default.
- W2914218087 cites W2768213699 @default.
- W2914218087 cites W2776192919 @default.
- W2914218087 cites W2804194904 @default.
- W2914218087 cites W2900475422 @default.
- W2914218087 cites W2949223833 @default.
- W2914218087 cites W3104585744 @default.
- W2914218087 doi "https://doi.org/10.1021/acs.jctc.8b00770" @default.
- W2914218087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30677296" @default.
- W2914218087 hasPublicationYear "2019" @default.
- W2914218087 type Work @default.
- W2914218087 sameAs 2914218087 @default.
- W2914218087 citedByCount "156" @default.
- W2914218087 countsByYear W29142180872018 @default.
- W2914218087 countsByYear W29142180872019 @default.
- W2914218087 countsByYear W29142180872020 @default.
- W2914218087 countsByYear W29142180872021 @default.
- W2914218087 countsByYear W29142180872022 @default.
- W2914218087 countsByYear W29142180872023 @default.
- W2914218087 crossrefType "journal-article" @default.
- W2914218087 hasAuthorship W2914218087A5026774143 @default.
- W2914218087 hasAuthorship W2914218087A5070681493 @default.
- W2914218087 hasAuthorship W2914218087A5081839766 @default.
- W2914218087 hasConcept C119857082 @default.
- W2914218087 hasConcept C121332964 @default.
- W2914218087 hasConcept C147597530 @default.
- W2914218087 hasConcept C154945302 @default.
- W2914218087 hasConcept C185592680 @default.
- W2914218087 hasConcept C186370098 @default.
- W2914218087 hasConcept C41008148 @default.
- W2914218087 hasConcept C459310 @default.
- W2914218087 hasConcept C50644808 @default.
- W2914218087 hasConcept C59593255 @default.
- W2914218087 hasConcept C62520636 @default.
- W2914218087 hasConceptScore W2914218087C119857082 @default.
- W2914218087 hasConceptScore W2914218087C121332964 @default.
- W2914218087 hasConceptScore W2914218087C147597530 @default.
- W2914218087 hasConceptScore W2914218087C154945302 @default.
- W2914218087 hasConceptScore W2914218087C185592680 @default.
- W2914218087 hasConceptScore W2914218087C186370098 @default.
- W2914218087 hasConceptScore W2914218087C41008148 @default.
- W2914218087 hasConceptScore W2914218087C459310 @default.