Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914259567> ?p ?o ?g. }
- W2914259567 endingPage "347" @default.
- W2914259567 startingPage "324" @default.
- W2914259567 abstract "Mineral soil constituents play an important role in the storage/release of nutrients due to their ability to adsorb and desorb cations. Phyllosilicate minerals are particularly reactive due to their small size and high specific surface area (up to ∼800 m2·g−1). Previous work has highlighted the potential of Ca isotopes (δ44/40Ca) to identify secondary processes occurring within soils. Nevertheless, the mechanisms of isotopic fractionation (amplitude and nature) associated with Ca adsorption onto and desorption from different phyllosilicate minerals that are commonly found in soil remain poorly understood. This step is fundamental to improve our understanding of the Ca biogeochemical cycle at the water-soil-plant interface. Consequently, the study of the possible Ca isotopic fractionation during adsorption/desorption phenomena was approached experimentally using three “model” substrates representative of the phyllosilicate minerals frequently encountered within soils (KGa-2 kaolinite, Swy-2 montmorillonite and Tuftane muscovite). The experiments were carried out under abiotic conditions in “water-mineral” batch systems by precisely controlling the physico-chemical conditions: pH, solid/solution ratio, initial dissolved Ca concentration, particle size distribution, reaction time and other cations concentrations. Our results show no significant isotopic fractionation associated with Ca adsorption or desorption during KGa-2 and coarse size fraction of Tuftane muscovite (50–200 µm) experiments regardless of the physico-chemical parameters used. During Ca adsorption onto Swy-2 and fine size fraction of Tuftane muscovite (0.1–1 µm), light isotopes (e.g., 40Ca) are preferentially adsorbed to the clay mineral, and a positive apparent isotopic fractionation between 0.10‰ and 0.28‰ is measured in the supernatant recovered after adsorption experiments. Kinetic and thermodynamic isotopic fractionation are observed during the Swy-2 experiments while only a thermodynamic fractionation took place during the Tuftane muscovite (0.1–1 µm) experiments. The results obtained for the Ca desorption experiments performed with a chloride hexaamine cobalt solution suggest that Ca adsorption and the associated isotopic fractionation are fully reversible. Our results show that the Ca isotopic fractionation intensity during adsorption phenomena onto clay minerals is controlled by the layer charge and specific surface area of the considered phyllosilicate mineral, as well as the presence of an interlayer space open to cationic solute." @default.
- W2914259567 created "2019-02-21" @default.
- W2914259567 creator A5001500042 @default.
- W2914259567 creator A5005411431 @default.
- W2914259567 creator A5063166281 @default.
- W2914259567 creator A5086710204 @default.
- W2914259567 creator A5087099613 @default.
- W2914259567 creator A5091015531 @default.
- W2914259567 date "2019-04-01" @default.
- W2914259567 modified "2023-09-30" @default.
- W2914259567 title "Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite)" @default.
- W2914259567 cites W150851327 @default.
- W2914259567 cites W1621429940 @default.
- W2914259567 cites W1900422434 @default.
- W2914259567 cites W1911322303 @default.
- W2914259567 cites W1970205353 @default.
- W2914259567 cites W1971817801 @default.
- W2914259567 cites W1972986424 @default.
- W2914259567 cites W1974855124 @default.
- W2914259567 cites W1976859547 @default.
- W2914259567 cites W1984436535 @default.
- W2914259567 cites W1986508774 @default.
- W2914259567 cites W1988207343 @default.
- W2914259567 cites W1990059612 @default.
- W2914259567 cites W1990395879 @default.
- W2914259567 cites W1991681205 @default.
- W2914259567 cites W1994224679 @default.
- W2914259567 cites W1994532964 @default.
- W2914259567 cites W1995638005 @default.
- W2914259567 cites W2000770004 @default.
- W2914259567 cites W2003954772 @default.
- W2914259567 cites W2004537338 @default.
- W2914259567 cites W2006088382 @default.
- W2914259567 cites W2008391619 @default.
- W2914259567 cites W2011058826 @default.
- W2914259567 cites W2011254969 @default.
- W2914259567 cites W2019931907 @default.
- W2914259567 cites W2019937345 @default.
- W2914259567 cites W2023953204 @default.
- W2914259567 cites W2025825598 @default.
- W2914259567 cites W2029305161 @default.
- W2914259567 cites W2032043349 @default.
- W2914259567 cites W2036669589 @default.
- W2914259567 cites W2036858959 @default.
- W2914259567 cites W2039023916 @default.
- W2914259567 cites W2039528274 @default.
- W2914259567 cites W2043683473 @default.
- W2914259567 cites W2044463489 @default.
- W2914259567 cites W2053550643 @default.
- W2914259567 cites W2057875082 @default.
- W2914259567 cites W2062032578 @default.
- W2914259567 cites W2066848719 @default.
- W2914259567 cites W2083096747 @default.
- W2914259567 cites W2089837267 @default.
- W2914259567 cites W2092844833 @default.
- W2914259567 cites W2097828895 @default.
- W2914259567 cites W2102629042 @default.
- W2914259567 cites W2103648693 @default.
- W2914259567 cites W2105882551 @default.
- W2914259567 cites W2108832705 @default.
- W2914259567 cites W2112573359 @default.
- W2914259567 cites W2114850632 @default.
- W2914259567 cites W2122388543 @default.
- W2914259567 cites W2131227846 @default.
- W2914259567 cites W2132456473 @default.
- W2914259567 cites W2137997598 @default.
- W2914259567 cites W2139042195 @default.
- W2914259567 cites W2141681033 @default.
- W2914259567 cites W2149225739 @default.
- W2914259567 cites W2157373450 @default.
- W2914259567 cites W2159518718 @default.
- W2914259567 cites W2166300301 @default.
- W2914259567 cites W2168118809 @default.
- W2914259567 cites W2313817192 @default.
- W2914259567 cites W2592895429 @default.
- W2914259567 cites W2734232183 @default.
- W2914259567 cites W2782194588 @default.
- W2914259567 cites W4300748641 @default.
- W2914259567 doi "https://doi.org/10.1016/j.gca.2019.02.017" @default.
- W2914259567 hasPublicationYear "2019" @default.
- W2914259567 type Work @default.
- W2914259567 sameAs 2914259567 @default.
- W2914259567 citedByCount "30" @default.
- W2914259567 countsByYear W29142595672019 @default.
- W2914259567 countsByYear W29142595672020 @default.
- W2914259567 countsByYear W29142595672021 @default.
- W2914259567 countsByYear W29142595672022 @default.
- W2914259567 countsByYear W29142595672023 @default.
- W2914259567 crossrefType "journal-article" @default.
- W2914259567 hasAuthorship W2914259567A5001500042 @default.
- W2914259567 hasAuthorship W2914259567A5005411431 @default.
- W2914259567 hasAuthorship W2914259567A5063166281 @default.
- W2914259567 hasAuthorship W2914259567A5086710204 @default.
- W2914259567 hasAuthorship W2914259567A5087099613 @default.
- W2914259567 hasAuthorship W2914259567A5091015531 @default.
- W2914259567 hasBestOaLocation W29142595671 @default.
- W2914259567 hasConcept C107872376 @default.
- W2914259567 hasConcept C127313418 @default.