Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914308566> ?p ?o ?g. }
- W2914308566 endingPage "2788" @default.
- W2914308566 startingPage "2780" @default.
- W2914308566 abstract "Objective: Surface electromyogram (EMG) signals have typically been assumed to follow a Gaussian distribution. However, the presence of non-Gaussian signals associated with muscle activity has been reported in recent studies, and there is no general model of the distribution of EMG signals that can explain both non-Gaussian and Gaussian distributions within a unified scheme. Methods: In this paper, we describe the formulation of a non-Gaussian EMG model based on a scale mixture distribution. In the model, an EMG signal at a certain time follows a Gaussian distribution, and its variance is handled as a random variable that follows an inverse gamma distribution. Accordingly, the probability distribution of EMG signals is assumed to be a mixture of Gaussians with the same mean but different variances. The EMG variance distribution is estimated via marginal likelihood maximization. Results: Experiments involving nine participants revealed that the proposed model provides a better fit to recorded EMG signals than conventional EMG models. It was also shown that variance distribution parameters may reflect underlying motor unit activity. Conclusion: This study proposed a scale mixture distribution-based stochastic EMG model capable of representing changes in non-Gaussianity associated with muscle activity. A series of experiments demonstrated the validity of the model and highlighted the relationship between the variance distribution and muscle force. Significance: The proposed model helps to clarify conventional wisdom regarding the probability distribution of surface EMG signals within a unified scheme." @default.
- W2914308566 created "2019-02-21" @default.
- W2914308566 creator A5018884738 @default.
- W2914308566 creator A5041087379 @default.
- W2914308566 creator A5081974106 @default.
- W2914308566 date "2019-10-01" @default.
- W2914308566 modified "2023-10-16" @default.
- W2914308566 title "A Scale Mixture-Based Stochastic Model of Surface EMG Signals With Variable Variances" @default.
- W2914308566 cites W1825787689 @default.
- W2914308566 cites W1967786464 @default.
- W2914308566 cites W1973429805 @default.
- W2914308566 cites W1974314376 @default.
- W2914308566 cites W1987390419 @default.
- W2914308566 cites W1990751384 @default.
- W2914308566 cites W1994120808 @default.
- W2914308566 cites W1996919407 @default.
- W2914308566 cites W2000299476 @default.
- W2914308566 cites W2024950038 @default.
- W2914308566 cites W2026596443 @default.
- W2914308566 cites W2034066231 @default.
- W2914308566 cites W2039045504 @default.
- W2914308566 cites W2045902658 @default.
- W2914308566 cites W2054404435 @default.
- W2914308566 cites W2076666920 @default.
- W2914308566 cites W2093799876 @default.
- W2914308566 cites W2116065217 @default.
- W2914308566 cites W2118020555 @default.
- W2914308566 cites W2122831507 @default.
- W2914308566 cites W2126222357 @default.
- W2914308566 cites W2127842820 @default.
- W2914308566 cites W2135989402 @default.
- W2914308566 cites W2148146281 @default.
- W2914308566 cites W2153718829 @default.
- W2914308566 cites W2158757324 @default.
- W2914308566 cites W2158764002 @default.
- W2914308566 cites W2164006146 @default.
- W2914308566 cites W2164231801 @default.
- W2914308566 cites W2171188488 @default.
- W2914308566 cites W2220400500 @default.
- W2914308566 cites W2271763765 @default.
- W2914308566 cites W2564254423 @default.
- W2914308566 cites W2582090493 @default.
- W2914308566 cites W2587122088 @default.
- W2914308566 cites W2753944258 @default.
- W2914308566 doi "https://doi.org/10.1109/tbme.2019.2895683" @default.
- W2914308566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30703005" @default.
- W2914308566 hasPublicationYear "2019" @default.
- W2914308566 type Work @default.
- W2914308566 sameAs 2914308566 @default.
- W2914308566 citedByCount "6" @default.
- W2914308566 countsByYear W29143085662019 @default.
- W2914308566 countsByYear W29143085662020 @default.
- W2914308566 countsByYear W29143085662021 @default.
- W2914308566 countsByYear W29143085662022 @default.
- W2914308566 countsByYear W29143085662023 @default.
- W2914308566 crossrefType "journal-article" @default.
- W2914308566 hasAuthorship W2914308566A5018884738 @default.
- W2914308566 hasAuthorship W2914308566A5041087379 @default.
- W2914308566 hasAuthorship W2914308566A5081974106 @default.
- W2914308566 hasBestOaLocation W29143085662 @default.
- W2914308566 hasConcept C102094743 @default.
- W2914308566 hasConcept C105795698 @default.
- W2914308566 hasConcept C110121322 @default.
- W2914308566 hasConcept C121332964 @default.
- W2914308566 hasConcept C121955636 @default.
- W2914308566 hasConcept C132878287 @default.
- W2914308566 hasConcept C134306372 @default.
- W2914308566 hasConcept C144133560 @default.
- W2914308566 hasConcept C149441793 @default.
- W2914308566 hasConcept C160947583 @default.
- W2914308566 hasConcept C163716315 @default.
- W2914308566 hasConcept C169760540 @default.
- W2914308566 hasConcept C196083921 @default.
- W2914308566 hasConcept C197055811 @default.
- W2914308566 hasConcept C202021718 @default.
- W2914308566 hasConcept C2781425072 @default.
- W2914308566 hasConcept C33923547 @default.
- W2914308566 hasConcept C4646027 @default.
- W2914308566 hasConcept C51267290 @default.
- W2914308566 hasConcept C56672385 @default.
- W2914308566 hasConcept C57205106 @default.
- W2914308566 hasConcept C61224824 @default.
- W2914308566 hasConcept C61326573 @default.
- W2914308566 hasConcept C62520636 @default.
- W2914308566 hasConcept C86803240 @default.
- W2914308566 hasConceptScore W2914308566C102094743 @default.
- W2914308566 hasConceptScore W2914308566C105795698 @default.
- W2914308566 hasConceptScore W2914308566C110121322 @default.
- W2914308566 hasConceptScore W2914308566C121332964 @default.
- W2914308566 hasConceptScore W2914308566C121955636 @default.
- W2914308566 hasConceptScore W2914308566C132878287 @default.
- W2914308566 hasConceptScore W2914308566C134306372 @default.
- W2914308566 hasConceptScore W2914308566C144133560 @default.
- W2914308566 hasConceptScore W2914308566C149441793 @default.
- W2914308566 hasConceptScore W2914308566C160947583 @default.
- W2914308566 hasConceptScore W2914308566C163716315 @default.
- W2914308566 hasConceptScore W2914308566C169760540 @default.
- W2914308566 hasConceptScore W2914308566C196083921 @default.