Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914309710> ?p ?o ?g. }
- W2914309710 endingPage "365" @default.
- W2914309710 startingPage "354" @default.
- W2914309710 abstract "Dictionary learning for sparse representations is generally conducted in two alternating steps-sparse coding and dictionary updating. In this paper, a new approach to solve the sparse coding step is proposed. Because this step involves an 10-norm, most, if not all, existing solutions only provide a local or approximate solution. Instead, a real 10 optimization is considered for the sparse coding problem providing a global solution. The proposed method reformulates the optimization problem as a mixed-integer quadratic program (MIQP), allowing then to obtain the global optimal solution by using an off-the-shelf optimization software. Because computing time is the main disadvantage of this approach, two techniques are proposed to improve its computational speed. One is to add suitable constraints and the other to use an appropriate initialization. The results obtained on an image denoising task demonstrate the feasibility of the MIQP approach for processing real images while achieving good performance compared to the most advanced methods." @default.
- W2914309710 created "2019-02-21" @default.
- W2914309710 creator A5017956425 @default.
- W2914309710 creator A5037212091 @default.
- W2914309710 creator A5046214153 @default.
- W2914309710 creator A5074267243 @default.
- W2914309710 date "2019-09-01" @default.
- W2914309710 modified "2023-09-25" @default.
- W2914309710 title "Mixed Integer Programming For Sparse Coding: Application to Image Denoising" @default.
- W2914309710 cites W1747778109 @default.
- W2914309710 cites W1946620893 @default.
- W2914309710 cites W2027982384 @default.
- W2914309710 cites W2029365400 @default.
- W2914309710 cites W2034683677 @default.
- W2914309710 cites W2056370875 @default.
- W2914309710 cites W2067678576 @default.
- W2914309710 cites W2095978736 @default.
- W2914309710 cites W2105464873 @default.
- W2914309710 cites W2116148865 @default.
- W2914309710 cites W2133520239 @default.
- W2914309710 cites W2133935274 @default.
- W2914309710 cites W2143386234 @default.
- W2914309710 cites W2148593155 @default.
- W2914309710 cites W2149861038 @default.
- W2914309710 cites W2153663612 @default.
- W2914309710 cites W2160547390 @default.
- W2914309710 cites W2163107063 @default.
- W2914309710 cites W2165752523 @default.
- W2914309710 cites W2166790554 @default.
- W2914309710 cites W2235020008 @default.
- W2914309710 cites W2259236698 @default.
- W2914309710 cites W2429199011 @default.
- W2914309710 cites W2466801766 @default.
- W2914309710 cites W2507998530 @default.
- W2914309710 cites W2508457857 @default.
- W2914309710 cites W2525624297 @default.
- W2914309710 cites W2547725455 @default.
- W2914309710 cites W2558525954 @default.
- W2914309710 cites W2608011385 @default.
- W2914309710 cites W2758388116 @default.
- W2914309710 cites W2963351303 @default.
- W2914309710 cites W2963527399 @default.
- W2914309710 cites W4206310440 @default.
- W2914309710 cites W872784446 @default.
- W2914309710 doi "https://doi.org/10.1109/tci.2019.2896790" @default.
- W2914309710 hasPublicationYear "2019" @default.
- W2914309710 type Work @default.
- W2914309710 sameAs 2914309710 @default.
- W2914309710 citedByCount "12" @default.
- W2914309710 countsByYear W29143097102019 @default.
- W2914309710 countsByYear W29143097102020 @default.
- W2914309710 countsByYear W29143097102021 @default.
- W2914309710 countsByYear W29143097102022 @default.
- W2914309710 countsByYear W29143097102023 @default.
- W2914309710 crossrefType "journal-article" @default.
- W2914309710 hasAuthorship W2914309710A5017956425 @default.
- W2914309710 hasAuthorship W2914309710A5037212091 @default.
- W2914309710 hasAuthorship W2914309710A5046214153 @default.
- W2914309710 hasAuthorship W2914309710A5074267243 @default.
- W2914309710 hasBestOaLocation W29143097102 @default.
- W2914309710 hasConcept C105795698 @default.
- W2914309710 hasConcept C11413529 @default.
- W2914309710 hasConcept C114466953 @default.
- W2914309710 hasConcept C124066611 @default.
- W2914309710 hasConcept C126255220 @default.
- W2914309710 hasConcept C137836250 @default.
- W2914309710 hasConcept C154945302 @default.
- W2914309710 hasConcept C163294075 @default.
- W2914309710 hasConcept C179518139 @default.
- W2914309710 hasConcept C199360897 @default.
- W2914309710 hasConcept C2777904410 @default.
- W2914309710 hasConcept C33923547 @default.
- W2914309710 hasConcept C41008148 @default.
- W2914309710 hasConcept C56086750 @default.
- W2914309710 hasConcept C77637269 @default.
- W2914309710 hasConcept C81845259 @default.
- W2914309710 hasConceptScore W2914309710C105795698 @default.
- W2914309710 hasConceptScore W2914309710C11413529 @default.
- W2914309710 hasConceptScore W2914309710C114466953 @default.
- W2914309710 hasConceptScore W2914309710C124066611 @default.
- W2914309710 hasConceptScore W2914309710C126255220 @default.
- W2914309710 hasConceptScore W2914309710C137836250 @default.
- W2914309710 hasConceptScore W2914309710C154945302 @default.
- W2914309710 hasConceptScore W2914309710C163294075 @default.
- W2914309710 hasConceptScore W2914309710C179518139 @default.
- W2914309710 hasConceptScore W2914309710C199360897 @default.
- W2914309710 hasConceptScore W2914309710C2777904410 @default.
- W2914309710 hasConceptScore W2914309710C33923547 @default.
- W2914309710 hasConceptScore W2914309710C41008148 @default.
- W2914309710 hasConceptScore W2914309710C56086750 @default.
- W2914309710 hasConceptScore W2914309710C77637269 @default.
- W2914309710 hasConceptScore W2914309710C81845259 @default.
- W2914309710 hasFunder F4320322725 @default.
- W2914309710 hasIssue "3" @default.
- W2914309710 hasLocation W29143097101 @default.
- W2914309710 hasLocation W29143097102 @default.
- W2914309710 hasLocation W29143097103 @default.
- W2914309710 hasOpenAccess W2914309710 @default.