Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914341597> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2914341597 abstract "Machine learning based techniques have been widely used in the literature for defect prediction. Although a number of comparative studies among different machine learning algorithms exist, these neither preprocess the data nor use valid metrics based on the quality of the data, which hamper the validity of the study. Moreover, how simple and conventional machine learning techniques perform in case of defect prediction has not been studied extensively in a valid way. This paper compares simple machine learning techniques for defect prediction on a systematically preprocessed data set, which is the popular NASA defect data set. Considering the quality of the data set, valid metrics have been used to statistically compare the performance of these algorithms. Moreover, the effect of feature selection is studied. It has been observed that these classifiers perform similarly for most of the data sets. Additionally, performing feature selection has been found helpful as it improves the overall accuracy of the defect prediction regardless of any learning algorithms used. The results also show the importance of data preprocessing and data quality for defect prediction." @default.
- W2914341597 created "2019-02-21" @default.
- W2914341597 creator A5021457615 @default.
- W2914341597 creator A5062972061 @default.
- W2914341597 date "2018-06-01" @default.
- W2914341597 modified "2023-09-26" @default.
- W2914341597 title "Evaluating the Effectiveness of Conventional Machine Learning Techniques for Defect Prediction: A Comparative Study" @default.
- W2914341597 doi "https://doi.org/10.1109/iciev.2018.8641006" @default.
- W2914341597 hasPublicationYear "2018" @default.
- W2914341597 type Work @default.
- W2914341597 sameAs 2914341597 @default.
- W2914341597 citedByCount "0" @default.
- W2914341597 crossrefType "proceedings-article" @default.
- W2914341597 hasAuthorship W2914341597A5021457615 @default.
- W2914341597 hasAuthorship W2914341597A5062972061 @default.
- W2914341597 hasConcept C10551718 @default.
- W2914341597 hasConcept C115903097 @default.
- W2914341597 hasConcept C119857082 @default.
- W2914341597 hasConcept C124101348 @default.
- W2914341597 hasConcept C138885662 @default.
- W2914341597 hasConcept C148483581 @default.
- W2914341597 hasConcept C154945302 @default.
- W2914341597 hasConcept C177264268 @default.
- W2914341597 hasConcept C199360897 @default.
- W2914341597 hasConcept C2776401178 @default.
- W2914341597 hasConcept C34736171 @default.
- W2914341597 hasConcept C41008148 @default.
- W2914341597 hasConcept C41895202 @default.
- W2914341597 hasConcept C58489278 @default.
- W2914341597 hasConcept C77967617 @default.
- W2914341597 hasConceptScore W2914341597C10551718 @default.
- W2914341597 hasConceptScore W2914341597C115903097 @default.
- W2914341597 hasConceptScore W2914341597C119857082 @default.
- W2914341597 hasConceptScore W2914341597C124101348 @default.
- W2914341597 hasConceptScore W2914341597C138885662 @default.
- W2914341597 hasConceptScore W2914341597C148483581 @default.
- W2914341597 hasConceptScore W2914341597C154945302 @default.
- W2914341597 hasConceptScore W2914341597C177264268 @default.
- W2914341597 hasConceptScore W2914341597C199360897 @default.
- W2914341597 hasConceptScore W2914341597C2776401178 @default.
- W2914341597 hasConceptScore W2914341597C34736171 @default.
- W2914341597 hasConceptScore W2914341597C41008148 @default.
- W2914341597 hasConceptScore W2914341597C41895202 @default.
- W2914341597 hasConceptScore W2914341597C58489278 @default.
- W2914341597 hasConceptScore W2914341597C77967617 @default.
- W2914341597 hasLocation W29143415971 @default.
- W2914341597 hasOpenAccess W2914341597 @default.
- W2914341597 hasPrimaryLocation W29143415971 @default.
- W2914341597 hasRelatedWork W2080521990 @default.
- W2914341597 hasRelatedWork W2114249473 @default.
- W2914341597 hasRelatedWork W2164807767 @default.
- W2914341597 hasRelatedWork W2560646185 @default.
- W2914341597 hasRelatedWork W2787337551 @default.
- W2914341597 hasRelatedWork W2794598182 @default.
- W2914341597 hasRelatedWork W2889453578 @default.
- W2914341597 hasRelatedWork W2891978504 @default.
- W2914341597 hasRelatedWork W2898995883 @default.
- W2914341597 hasRelatedWork W2914963813 @default.
- W2914341597 hasRelatedWork W2965469552 @default.
- W2914341597 hasRelatedWork W3042453027 @default.
- W2914341597 hasRelatedWork W3086291773 @default.
- W2914341597 hasRelatedWork W3089681385 @default.
- W2914341597 hasRelatedWork W3124826750 @default.
- W2914341597 hasRelatedWork W3154169721 @default.
- W2914341597 hasRelatedWork W3154847449 @default.
- W2914341597 hasRelatedWork W3180096702 @default.
- W2914341597 hasRelatedWork W3198860922 @default.
- W2914341597 hasRelatedWork W3198951296 @default.
- W2914341597 isParatext "false" @default.
- W2914341597 isRetracted "false" @default.
- W2914341597 magId "2914341597" @default.
- W2914341597 workType "article" @default.