Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914352956> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2914352956 abstract "Exploring ways to connect data is crucial to building knowledge graphs to associate data from different domains together. Humans, for example, can learn to associate flour with bread because bread is made of flour so that they can recall information of flour given a piece of bread even though bread and flour have few common features. In data mining, this ability can be translated to the way to connect images, texts, audios from different classes or domains together. Most works so far assume shared feature representations between domains we want to connect together. Another limitation yet to be improved is that for each defined mapping scheme, we often have to train a new model end-to-end among all sample data, which is often expensive. In this work, we present a model that aims to simultaneously address the two limitations. We use unconditionally trained Variational Autoencoders(VAEs) to project high dimensional data into the latent space and present a novel generative model that transfer latent representation of data from one domain to another by any custom schema. The model makes no assumption on any shared representation among different domains. The VAEs that encodes entire datasets, being the largest training overhead in this model, can be reused to support any new mapping schema without any retraining." @default.
- W2914352956 created "2019-02-21" @default.
- W2914352956 creator A5066535782 @default.
- W2914352956 date "2018-11-01" @default.
- W2914352956 modified "2023-09-26" @default.
- W2914352956 title "Mining Connections Between Domains through Latent Space Mapping" @default.
- W2914352956 cites W1959608418 @default.
- W2914352956 cites W2099471712 @default.
- W2914352956 cites W2125389028 @default.
- W2914352956 cites W2335728318 @default.
- W2914352956 cites W2411541852 @default.
- W2914352956 cites W2412320034 @default.
- W2914352956 cites W2557579533 @default.
- W2914352956 cites W2750384547 @default.
- W2914352956 cites W2759213147 @default.
- W2914352956 cites W2770178731 @default.
- W2914352956 cites W2807692250 @default.
- W2914352956 cites W2949999304 @default.
- W2914352956 cites W2952673310 @default.
- W2914352956 cites W2962947361 @default.
- W2914352956 cites W2963049866 @default.
- W2914352956 cites W2963073614 @default.
- W2914352956 cites W2963104724 @default.
- W2914352956 cites W2963330667 @default.
- W2914352956 cites W2963746531 @default.
- W2914352956 cites W2963801305 @default.
- W2914352956 cites W2964127395 @default.
- W2914352956 doi "https://doi.org/10.1109/icdmw.2018.00157" @default.
- W2914352956 hasPublicationYear "2018" @default.
- W2914352956 type Work @default.
- W2914352956 sameAs 2914352956 @default.
- W2914352956 citedByCount "0" @default.
- W2914352956 crossrefType "proceedings-article" @default.
- W2914352956 hasAuthorship W2914352956A5066535782 @default.
- W2914352956 hasConcept C124101348 @default.
- W2914352956 hasConcept C154945302 @default.
- W2914352956 hasConcept C167966045 @default.
- W2914352956 hasConcept C17744445 @default.
- W2914352956 hasConcept C199539241 @default.
- W2914352956 hasConcept C23123220 @default.
- W2914352956 hasConcept C2776359362 @default.
- W2914352956 hasConcept C39890363 @default.
- W2914352956 hasConcept C41008148 @default.
- W2914352956 hasConcept C52146309 @default.
- W2914352956 hasConcept C67186912 @default.
- W2914352956 hasConcept C77088390 @default.
- W2914352956 hasConcept C83665646 @default.
- W2914352956 hasConcept C94625758 @default.
- W2914352956 hasConceptScore W2914352956C124101348 @default.
- W2914352956 hasConceptScore W2914352956C154945302 @default.
- W2914352956 hasConceptScore W2914352956C167966045 @default.
- W2914352956 hasConceptScore W2914352956C17744445 @default.
- W2914352956 hasConceptScore W2914352956C199539241 @default.
- W2914352956 hasConceptScore W2914352956C23123220 @default.
- W2914352956 hasConceptScore W2914352956C2776359362 @default.
- W2914352956 hasConceptScore W2914352956C39890363 @default.
- W2914352956 hasConceptScore W2914352956C41008148 @default.
- W2914352956 hasConceptScore W2914352956C52146309 @default.
- W2914352956 hasConceptScore W2914352956C67186912 @default.
- W2914352956 hasConceptScore W2914352956C77088390 @default.
- W2914352956 hasConceptScore W2914352956C83665646 @default.
- W2914352956 hasConceptScore W2914352956C94625758 @default.
- W2914352956 hasLocation W29143529561 @default.
- W2914352956 hasOpenAccess W2914352956 @default.
- W2914352956 hasPrimaryLocation W29143529561 @default.
- W2914352956 hasRelatedWork W1599080887 @default.
- W2914352956 hasRelatedWork W1979117876 @default.
- W2914352956 hasRelatedWork W2051922492 @default.
- W2914352956 hasRelatedWork W2087346071 @default.
- W2914352956 hasRelatedWork W2144709747 @default.
- W2914352956 hasRelatedWork W2151967264 @default.
- W2914352956 hasRelatedWork W2914352956 @default.
- W2914352956 hasRelatedWork W2971453360 @default.
- W2914352956 hasRelatedWork W2998635054 @default.
- W2914352956 hasRelatedWork W3096684504 @default.
- W2914352956 isParatext "false" @default.
- W2914352956 isRetracted "false" @default.
- W2914352956 magId "2914352956" @default.
- W2914352956 workType "article" @default.