Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914363005> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2914363005 endingPage "404" @default.
- W2914363005 startingPage "404" @default.
- W2914363005 abstract "The 3D image segmentation is the process of partitioning a digital 3D volumes into multiple segments. This paper presents a fully automatic method for high resolution 3D volumetric segmentation of medical image data using modern supervised deep learning approach. We introduce 3D Dense-U-Net neural network architecture implementing densely connected layers. It has been optimized for graphic process unit accelerated high resolution image processing on currently available hardware (Nvidia GTX 1080ti). The method has been evaluated on MRI brain 3D volumetric dataset and CT thoracic scan dataset for spine segmentation. In contrast with many previous methods, our approach is capable of precise segmentation of the input image data in the original resolution, without any pre-processing of the input image. It can process image data in 3D and has achieved accuracy of 99.72% on MRI brain dataset, which outperformed results achieved by human expert. On lumbar and thoracic vertebrae CT dataset it has achieved the accuracy of 99.80%. The architecture proposed in this paper can also be easily applied to any task already using U-Net network as a segmentation algorithm to enhance its results. Complete source code was released online under open-source license." @default.
- W2914363005 created "2019-02-21" @default.
- W2914363005 creator A5005339015 @default.
- W2914363005 creator A5036042625 @default.
- W2914363005 creator A5036154051 @default.
- W2914363005 creator A5038343229 @default.
- W2914363005 creator A5061350050 @default.
- W2914363005 date "2019-01-25" @default.
- W2914363005 modified "2023-10-16" @default.
- W2914363005 title "Optimized High Resolution 3D Dense-U-Net Network for Brain and Spine Segmentation" @default.
- W2914363005 cites W1909740415 @default.
- W2914363005 cites W1993947467 @default.
- W2914363005 cites W2028158228 @default.
- W2914363005 cites W2061567202 @default.
- W2914363005 cites W2136573752 @default.
- W2914363005 cites W2621028221 @default.
- W2914363005 cites W2964227007 @default.
- W2914363005 doi "https://doi.org/10.3390/app9030404" @default.
- W2914363005 hasPublicationYear "2019" @default.
- W2914363005 type Work @default.
- W2914363005 sameAs 2914363005 @default.
- W2914363005 citedByCount "69" @default.
- W2914363005 countsByYear W29143630052019 @default.
- W2914363005 countsByYear W29143630052020 @default.
- W2914363005 countsByYear W29143630052021 @default.
- W2914363005 countsByYear W29143630052022 @default.
- W2914363005 countsByYear W29143630052023 @default.
- W2914363005 crossrefType "journal-article" @default.
- W2914363005 hasAuthorship W2914363005A5005339015 @default.
- W2914363005 hasAuthorship W2914363005A5036042625 @default.
- W2914363005 hasAuthorship W2914363005A5036154051 @default.
- W2914363005 hasAuthorship W2914363005A5038343229 @default.
- W2914363005 hasAuthorship W2914363005A5061350050 @default.
- W2914363005 hasBestOaLocation W29143630051 @default.
- W2914363005 hasConcept C108583219 @default.
- W2914363005 hasConcept C111919701 @default.
- W2914363005 hasConcept C124504099 @default.
- W2914363005 hasConcept C153180895 @default.
- W2914363005 hasConcept C154945302 @default.
- W2914363005 hasConcept C31972630 @default.
- W2914363005 hasConcept C41008148 @default.
- W2914363005 hasConcept C50644808 @default.
- W2914363005 hasConcept C89600930 @default.
- W2914363005 hasConcept C98045186 @default.
- W2914363005 hasConceptScore W2914363005C108583219 @default.
- W2914363005 hasConceptScore W2914363005C111919701 @default.
- W2914363005 hasConceptScore W2914363005C124504099 @default.
- W2914363005 hasConceptScore W2914363005C153180895 @default.
- W2914363005 hasConceptScore W2914363005C154945302 @default.
- W2914363005 hasConceptScore W2914363005C31972630 @default.
- W2914363005 hasConceptScore W2914363005C41008148 @default.
- W2914363005 hasConceptScore W2914363005C50644808 @default.
- W2914363005 hasConceptScore W2914363005C89600930 @default.
- W2914363005 hasConceptScore W2914363005C98045186 @default.
- W2914363005 hasFunder F4320311333 @default.
- W2914363005 hasFunder F4320321798 @default.
- W2914363005 hasIssue "3" @default.
- W2914363005 hasLocation W29143630051 @default.
- W2914363005 hasLocation W29143630052 @default.
- W2914363005 hasOpenAccess W2914363005 @default.
- W2914363005 hasPrimaryLocation W29143630051 @default.
- W2914363005 hasRelatedWork W1507266234 @default.
- W2914363005 hasRelatedWork W1669643531 @default.
- W2914363005 hasRelatedWork W2110230079 @default.
- W2914363005 hasRelatedWork W2117664411 @default.
- W2914363005 hasRelatedWork W2117933325 @default.
- W2914363005 hasRelatedWork W2122581818 @default.
- W2914363005 hasRelatedWork W2159066190 @default.
- W2914363005 hasRelatedWork W2739874619 @default.
- W2914363005 hasRelatedWork W2948658236 @default.
- W2914363005 hasRelatedWork W1967061043 @default.
- W2914363005 hasVolume "9" @default.
- W2914363005 isParatext "false" @default.
- W2914363005 isRetracted "false" @default.
- W2914363005 magId "2914363005" @default.
- W2914363005 workType "article" @default.