Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914367046> ?p ?o ?g. }
- W2914367046 endingPage "10" @default.
- W2914367046 startingPage "1" @default.
- W2914367046 abstract "In order to find the predictive indexes for metabolic syndrome (MS), a data mining method was used to identify significant physiological indexes and traditional Chinese medicine (TCM) constitutions.The annual health check-up data including physical examination data; biochemical tests and Constitution in Chinese Medicine Questionnaire (CCMQ) measurement data from 2014 to 2016 were screened according to the inclusion and exclusion criteria. A predictive matrix was established by the longitudinal data of three consecutive years. TreeNet machine learning algorithm was applied to build prediction model to uncover the dependence relationship between physiological indexes, TCM constitutions, and MS.By model testing, the overall accuracy rate for prediction model by TreeNet was 73.23%. Top 12.31% individuals in test group (n=325) that have higher probability of having MS covered 23.68% MS patients, showing 0.92 times more risk of having MS than the general population. Importance of ranked top 15 was listed in descending order . The top 5 variables of great importance in MS prediction were TBIL difference between 2014 and 2015 (D_TBIL), TBIL in 2014 (TBIL 2014), LDL-C difference between 2014 and 2015 (D_LDL-C), CCMQ scores for balanced constitution in 2015 (balanced constitution 2015), and TCH in 2015 (TCH 2015). When D_TBIL was between 0 and 2, TBIL 2014 was between 10 and 15, D_LDL-C was above 19, balanced constitution 2015 was below 60, or TCH 2015 was above 5.7, the incidence of MS was higher. Furthermore, there were interactions between balanced constitution 2015 score and TBIL 2014 or D_LDL-C in MS prediction.Balanced constitution, TBIL, LDL-C, and TCH level can act as predictors for MS. The combination of TCM constitution and physiological indexes can give early warning to MS." @default.
- W2914367046 created "2019-02-21" @default.
- W2914367046 creator A5005458755 @default.
- W2914367046 creator A5020192808 @default.
- W2914367046 creator A5028348497 @default.
- W2914367046 creator A5056129656 @default.
- W2914367046 creator A5068400760 @default.
- W2914367046 creator A5076154481 @default.
- W2914367046 date "2019-02-03" @default.
- W2914367046 modified "2023-09-26" @default.
- W2914367046 title "Identification of Traditional Chinese Medicine Constitutions and Physiological Indexes Risk Factors in Metabolic Syndrome: A Data Mining Approach" @default.
- W2914367046 cites W1546680607 @default.
- W2914367046 cites W1579491283 @default.
- W2914367046 cites W1873615421 @default.
- W2914367046 cites W1976454476 @default.
- W2914367046 cites W1979299627 @default.
- W2914367046 cites W1997444313 @default.
- W2914367046 cites W2003222902 @default.
- W2914367046 cites W2003380115 @default.
- W2914367046 cites W2018330219 @default.
- W2914367046 cites W2024067944 @default.
- W2914367046 cites W2024586516 @default.
- W2914367046 cites W2036713874 @default.
- W2914367046 cites W2070493638 @default.
- W2914367046 cites W2071073426 @default.
- W2914367046 cites W2085896786 @default.
- W2914367046 cites W2093462237 @default.
- W2914367046 cites W2099216532 @default.
- W2914367046 cites W2123441964 @default.
- W2914367046 cites W2125223451 @default.
- W2914367046 cites W2129448542 @default.
- W2914367046 cites W2180791797 @default.
- W2914367046 cites W2239135493 @default.
- W2914367046 cites W2247462025 @default.
- W2914367046 cites W2551332719 @default.
- W2914367046 cites W2557384502 @default.
- W2914367046 cites W2563630219 @default.
- W2914367046 cites W2603312950 @default.
- W2914367046 cites W2621164555 @default.
- W2914367046 cites W2746632513 @default.
- W2914367046 cites W2758084068 @default.
- W2914367046 cites W2765754443 @default.
- W2914367046 cites W2766227970 @default.
- W2914367046 cites W2789804734 @default.
- W2914367046 cites W2800859297 @default.
- W2914367046 cites W2809069215 @default.
- W2914367046 doi "https://doi.org/10.1155/2019/1686205" @default.
- W2914367046 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6378021" @default.
- W2914367046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30854002" @default.
- W2914367046 hasPublicationYear "2019" @default.
- W2914367046 type Work @default.
- W2914367046 sameAs 2914367046 @default.
- W2914367046 citedByCount "8" @default.
- W2914367046 countsByYear W29143670462020 @default.
- W2914367046 countsByYear W29143670462021 @default.
- W2914367046 countsByYear W29143670462022 @default.
- W2914367046 crossrefType "journal-article" @default.
- W2914367046 hasAuthorship W2914367046A5005458755 @default.
- W2914367046 hasAuthorship W2914367046A5020192808 @default.
- W2914367046 hasAuthorship W2914367046A5028348497 @default.
- W2914367046 hasAuthorship W2914367046A5056129656 @default.
- W2914367046 hasAuthorship W2914367046A5068400760 @default.
- W2914367046 hasAuthorship W2914367046A5076154481 @default.
- W2914367046 hasBestOaLocation W29143670461 @default.
- W2914367046 hasConcept C105795698 @default.
- W2914367046 hasConcept C126322002 @default.
- W2914367046 hasConcept C2524010 @default.
- W2914367046 hasConcept C2908647359 @default.
- W2914367046 hasConcept C33923547 @default.
- W2914367046 hasConcept C61511704 @default.
- W2914367046 hasConcept C71924100 @default.
- W2914367046 hasConcept C99454951 @default.
- W2914367046 hasConceptScore W2914367046C105795698 @default.
- W2914367046 hasConceptScore W2914367046C126322002 @default.
- W2914367046 hasConceptScore W2914367046C2524010 @default.
- W2914367046 hasConceptScore W2914367046C2908647359 @default.
- W2914367046 hasConceptScore W2914367046C33923547 @default.
- W2914367046 hasConceptScore W2914367046C61511704 @default.
- W2914367046 hasConceptScore W2914367046C71924100 @default.
- W2914367046 hasConceptScore W2914367046C99454951 @default.
- W2914367046 hasFunder F4320325435 @default.
- W2914367046 hasLocation W29143670461 @default.
- W2914367046 hasLocation W29143670462 @default.
- W2914367046 hasLocation W29143670463 @default.
- W2914367046 hasLocation W29143670464 @default.
- W2914367046 hasOpenAccess W2914367046 @default.
- W2914367046 hasPrimaryLocation W29143670461 @default.
- W2914367046 hasRelatedWork W1870272006 @default.
- W2914367046 hasRelatedWork W1963767908 @default.
- W2914367046 hasRelatedWork W1974042200 @default.
- W2914367046 hasRelatedWork W2040571669 @default.
- W2914367046 hasRelatedWork W2048418690 @default.
- W2914367046 hasRelatedWork W2339759642 @default.
- W2914367046 hasRelatedWork W2345715974 @default.
- W2914367046 hasRelatedWork W2911740078 @default.
- W2914367046 hasRelatedWork W3179572266 @default.
- W2914367046 hasRelatedWork W4289867877 @default.
- W2914367046 hasVolume "2019" @default.