Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914373361> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2914373361 abstract "Topic models have many important applications in fields such as Natural Language Processing. Topic embedding modelling aims at introducing word and topic embeddings into topic models to describe correlations between topics. Existing topic embedding methods use documents alone, which suffer from the topical fuzziness problem brought by the introduction of embeddings of semantic fuzzy words, e.g. polysemous words or some misleading academic terms. Links often exist between documents which form document networks. The use of links may alleviate this semantic fuzziness, but they are sparse and noisy which may meanwhile mislead topics. In this paper, we utilize community structure to solve these problems. It can not only alleviate the topical fuzziness of topic embeddings since communities are often believed to be topic related, but also can overcome the drawbacks brought by the sparsity and noise of networks (because community is a high-order network information). We give a new generative topic embedding model which incorporates documents (with topics) and network (with communities) together, and uses probability transition to describe the relationship between topics and communities to make it robust when topics and communities do not match. An efficient variational inference algorithm is then proposed to learn the model. We validate the superiority of our new approach on two tasks, document classifications and visualization of topic embeddings, respectively." @default.
- W2914373361 created "2019-02-21" @default.
- W2914373361 creator A5005761664 @default.
- W2914373361 creator A5009013876 @default.
- W2914373361 creator A5012455357 @default.
- W2914373361 creator A5060047094 @default.
- W2914373361 creator A5062430868 @default.
- W2914373361 creator A5077596057 @default.
- W2914373361 creator A5084840427 @default.
- W2914373361 date "2019-05-13" @default.
- W2914373361 modified "2023-09-27" @default.
- W2914373361 title "A Novel Generative Topic Embedding Model by Introducing Network Communities" @default.
- W2914373361 cites W1647709314 @default.
- W2914373361 cites W1817993605 @default.
- W2914373361 cites W1977830790 @default.
- W2914373361 cites W2001082470 @default.
- W2914373361 cites W2022322548 @default.
- W2914373361 cites W2073749068 @default.
- W2914373361 cites W2119998616 @default.
- W2914373361 cites W2178725228 @default.
- W2914373361 cites W2380769351 @default.
- W2914373361 cites W2516087440 @default.
- W2914373361 cites W2538371562 @default.
- W2914373361 cites W2621145626 @default.
- W2914373361 cites W2731449405 @default.
- W2914373361 cites W2766945858 @default.
- W2914373361 cites W2782630728 @default.
- W2914373361 cites W2788006950 @default.
- W2914373361 cites W2963296463 @default.
- W2914373361 cites W3099640513 @default.
- W2914373361 doi "https://doi.org/10.1145/3308558.3313623" @default.
- W2914373361 hasPublicationYear "2019" @default.
- W2914373361 type Work @default.
- W2914373361 sameAs 2914373361 @default.
- W2914373361 citedByCount "6" @default.
- W2914373361 countsByYear W29143733612021 @default.
- W2914373361 countsByYear W29143733612022 @default.
- W2914373361 crossrefType "proceedings-article" @default.
- W2914373361 hasAuthorship W2914373361A5005761664 @default.
- W2914373361 hasAuthorship W2914373361A5009013876 @default.
- W2914373361 hasAuthorship W2914373361A5012455357 @default.
- W2914373361 hasAuthorship W2914373361A5060047094 @default.
- W2914373361 hasAuthorship W2914373361A5062430868 @default.
- W2914373361 hasAuthorship W2914373361A5077596057 @default.
- W2914373361 hasAuthorship W2914373361A5084840427 @default.
- W2914373361 hasConcept C154945302 @default.
- W2914373361 hasConcept C167966045 @default.
- W2914373361 hasConcept C39890363 @default.
- W2914373361 hasConcept C41008148 @default.
- W2914373361 hasConcept C41608201 @default.
- W2914373361 hasConceptScore W2914373361C154945302 @default.
- W2914373361 hasConceptScore W2914373361C167966045 @default.
- W2914373361 hasConceptScore W2914373361C39890363 @default.
- W2914373361 hasConceptScore W2914373361C41008148 @default.
- W2914373361 hasConceptScore W2914373361C41608201 @default.
- W2914373361 hasLocation W29143733611 @default.
- W2914373361 hasOpenAccess W2914373361 @default.
- W2914373361 hasPrimaryLocation W29143733611 @default.
- W2914373361 hasRelatedWork W1982082392 @default.
- W2914373361 hasRelatedWork W1992580977 @default.
- W2914373361 hasRelatedWork W2335364074 @default.
- W2914373361 hasRelatedWork W3003214776 @default.
- W2914373361 hasRelatedWork W3008273191 @default.
- W2914373361 hasRelatedWork W3014074531 @default.
- W2914373361 hasRelatedWork W3017062960 @default.
- W2914373361 hasRelatedWork W3215252950 @default.
- W2914373361 hasRelatedWork W4300480195 @default.
- W2914373361 hasRelatedWork W4320342258 @default.
- W2914373361 isParatext "false" @default.
- W2914373361 isRetracted "false" @default.
- W2914373361 magId "2914373361" @default.
- W2914373361 workType "article" @default.