Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914376548> ?p ?o ?g. }
- W2914376548 endingPage "46" @default.
- W2914376548 startingPage "28" @default.
- W2914376548 abstract "Wearable sensors (wearables) have been commonly integrated into a wide variety of commercial products and are increasingly being used to collect and process raw physiological parameters into salient digital health information. The data collected by wearables are currently being investigated across a broad set of clinical domains and patient populations. There is significant research occurring in the domain of algorithm development, with the aim of translating raw sensor data into fitness- or health-related outcomes of interest for users, patients, and health care providers.The aim of this review is to highlight a selected group of fitness- and health-related indicators from wearables data and to describe several algorithmic approaches used to generate these higher order indicators.A systematic search of the Pubmed database was performed with the following search terms (number of records in parentheses): Fitbit algorithm (18), Apple Watch algorithm (3), Garmin algorithm (5), Microsoft Band algorithm (8), Samsung Gear algorithm (2), Xiaomi MiBand algorithm (1), Huawei Band (Watch) algorithm (2), photoplethysmography algorithm (465), accelerometry algorithm (966), ECG algorithm (8287), continuous glucose monitor algorithm (343). The search terms chosen for this review are focused on algorithms for wearable devices that dominated the commercial wearables market between 2014-2017 and that were highly represented in the biomedical literature. A second set of search terms included categories of algorithms for fitness-related and health-related indicators that are commonly used in wearable devices (e.g. accelerometry, PPG, ECG). These papers covered the following domain areas: fitness; exercise; movement; physical activity; step count; walking; running; swimming; energy expenditure; atrial fibrillation; arrhythmia; cardiovascular; autonomic nervous system; neuropathy; heart rate variability; fall detection; trauma; behavior change; diet; eating; stress detection; serum glucose monitoring; continuous glucose monitoring; diabetes mellitus type 1; diabetes mellitus type 2. All studies uncovered through this search on commercially available device algorithms and pivotal studies on sensor algorithm development were summarized, and a summary table was constructed using references generated by the literature review as described (Table 1).Wearable health technologies aim to collect and process raw physiological or environmental parameters into salient digital health information. Much of the current and future utility of wearables lies in the signal processing steps and algorithms used to analyze large volumes of data. Continued algorithmic development and advances in machine learning techniques will further increase analytic capabilities. In the context of these advances, our review aims to highlight a range of advances in fitness- and other health-related indicators provided by current wearable technologies." @default.
- W2914376548 created "2019-02-21" @default.
- W2914376548 creator A5005786784 @default.
- W2914376548 creator A5024120181 @default.
- W2914376548 creator A5069181276 @default.
- W2914376548 creator A5077119159 @default.
- W2914376548 date "2019-03-01" @default.
- W2914376548 modified "2023-10-13" @default.
- W2914376548 title "Windows into human health through wearables data analytics" @default.
- W2914376548 cites W1487019984 @default.
- W2914376548 cites W1522850626 @default.
- W2914376548 cites W1545241942 @default.
- W2914376548 cites W1616073113 @default.
- W2914376548 cites W1682770403 @default.
- W2914376548 cites W1882648444 @default.
- W2914376548 cites W1892816057 @default.
- W2914376548 cites W1900048720 @default.
- W2914376548 cites W1967900132 @default.
- W2914376548 cites W1968089381 @default.
- W2914376548 cites W1973199006 @default.
- W2914376548 cites W1973601476 @default.
- W2914376548 cites W1981203790 @default.
- W2914376548 cites W1985076132 @default.
- W2914376548 cites W1990362345 @default.
- W2914376548 cites W1995495781 @default.
- W2914376548 cites W1999798000 @default.
- W2914376548 cites W2000938010 @default.
- W2914376548 cites W2004844047 @default.
- W2914376548 cites W2009256127 @default.
- W2914376548 cites W2009516178 @default.
- W2914376548 cites W2010095254 @default.
- W2914376548 cites W2010921321 @default.
- W2914376548 cites W2011847543 @default.
- W2914376548 cites W2013582641 @default.
- W2914376548 cites W2017689092 @default.
- W2914376548 cites W2021589706 @default.
- W2914376548 cites W2022508996 @default.
- W2914376548 cites W2023143019 @default.
- W2914376548 cites W2026699230 @default.
- W2914376548 cites W2028960923 @default.
- W2914376548 cites W2033954491 @default.
- W2914376548 cites W2051919578 @default.
- W2914376548 cites W2068153453 @default.
- W2914376548 cites W2072517764 @default.
- W2914376548 cites W2087633279 @default.
- W2914376548 cites W2088338354 @default.
- W2914376548 cites W2092031893 @default.
- W2914376548 cites W2094144838 @default.
- W2914376548 cites W2096170052 @default.
- W2914376548 cites W2104106112 @default.
- W2914376548 cites W2112783455 @default.
- W2914376548 cites W2114775432 @default.
- W2914376548 cites W2121289914 @default.
- W2914376548 cites W2121394112 @default.
- W2914376548 cites W2122897458 @default.
- W2914376548 cites W2128363478 @default.
- W2914376548 cites W2135576379 @default.
- W2914376548 cites W2138969187 @default.
- W2914376548 cites W2144015117 @default.
- W2914376548 cites W2146291834 @default.
- W2914376548 cites W2146609676 @default.
- W2914376548 cites W2147018083 @default.
- W2914376548 cites W2149985401 @default.
- W2914376548 cites W2155806188 @default.
- W2914376548 cites W2159348352 @default.
- W2914376548 cites W2160815625 @default.
- W2914376548 cites W2162557622 @default.
- W2914376548 cites W2165093902 @default.
- W2914376548 cites W2167851640 @default.
- W2914376548 cites W2175465469 @default.
- W2914376548 cites W2176813830 @default.
- W2914376548 cites W2178590034 @default.
- W2914376548 cites W2193564998 @default.
- W2914376548 cites W2195342085 @default.
- W2914376548 cites W2202263629 @default.
- W2914376548 cites W2220182234 @default.
- W2914376548 cites W2286261512 @default.
- W2914376548 cites W2293946971 @default.
- W2914376548 cites W2302336355 @default.
- W2914376548 cites W2316197520 @default.
- W2914376548 cites W2331451475 @default.
- W2914376548 cites W2395784021 @default.
- W2914376548 cites W2414900880 @default.
- W2914376548 cites W2461344864 @default.
- W2914376548 cites W2475427379 @default.
- W2914376548 cites W2482368507 @default.
- W2914376548 cites W2486199753 @default.
- W2914376548 cites W2521371551 @default.
- W2914376548 cites W2533802684 @default.
- W2914376548 cites W2536764488 @default.
- W2914376548 cites W2547651330 @default.
- W2914376548 cites W2556190418 @default.
- W2914376548 cites W2558399657 @default.
- W2914376548 cites W2560384232 @default.
- W2914376548 cites W2565317782 @default.
- W2914376548 cites W2575460524 @default.
- W2914376548 cites W2577350032 @default.
- W2914376548 cites W2581630660 @default.