Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914381618> ?p ?o ?g. }
- W2914381618 endingPage "704" @default.
- W2914381618 startingPage "692" @default.
- W2914381618 abstract "The volatility of exchange rate is very important to a country’s trading. Accurately forecasting exchange rate time series appears to be a challenging task for the scientific community on account of its nonstationary and nonlinear structural nature. In order to improve the performance of exchange rate forecasting, this study develops two evolutionary support vector regression models to forecast four typical RMB exchange rates (CNY against USD, EUR, JPY and GBP), and employs four evaluation criteria to assess the performance of out-of-sample exchange rate forecasting. In this study, the evolutionary algorithm optimizes the SVR parameters by balancing search between the global and local optima. However, the inputs of models are selected though phase space reconstruction method from historical data of exchange rate series. The empirical results demonstrate that our proposed evolutionary support vector regression outperforms all other benchmark models in terms of level forecasting accuracy, directional forecasting accuracy and statistical accuracy. As it turns out, our proposed evolutionary support vector regression is a promising approach for RMB exchange rate forecasting." @default.
- W2914381618 created "2019-02-21" @default.
- W2914381618 creator A5015005766 @default.
- W2914381618 creator A5017986280 @default.
- W2914381618 creator A5018633751 @default.
- W2914381618 creator A5041303337 @default.
- W2914381618 date "2019-05-01" @default.
- W2914381618 modified "2023-10-05" @default.
- W2914381618 title "Evolutionary support vector machine for RMB exchange rate forecasting" @default.
- W2914381618 cites W1504141014 @default.
- W2914381618 cites W1572930125 @default.
- W2914381618 cites W1586335931 @default.
- W2914381618 cites W1661370443 @default.
- W2914381618 cites W1722542647 @default.
- W2914381618 cites W1986478348 @default.
- W2914381618 cites W1991155410 @default.
- W2914381618 cites W1998371697 @default.
- W2914381618 cites W2031762450 @default.
- W2914381618 cites W2036681246 @default.
- W2914381618 cites W2037671496 @default.
- W2914381618 cites W2046924264 @default.
- W2914381618 cites W2064015712 @default.
- W2914381618 cites W2087077155 @default.
- W2914381618 cites W2092436092 @default.
- W2914381618 cites W2109483038 @default.
- W2914381618 cites W2124098825 @default.
- W2914381618 cites W2134383471 @default.
- W2914381618 cites W2138151720 @default.
- W2914381618 cites W2148999633 @default.
- W2914381618 cites W2155003041 @default.
- W2914381618 cites W2157918707 @default.
- W2914381618 cites W2165434809 @default.
- W2914381618 cites W2166648919 @default.
- W2914381618 cites W222543348 @default.
- W2914381618 cites W2346374676 @default.
- W2914381618 cites W2560568060 @default.
- W2914381618 cites W2561462867 @default.
- W2914381618 cites W2590425039 @default.
- W2914381618 cites W2626514104 @default.
- W2914381618 cites W2778695775 @default.
- W2914381618 cites W2791865700 @default.
- W2914381618 cites W2911676950 @default.
- W2914381618 cites W3122068384 @default.
- W2914381618 cites W3123801023 @default.
- W2914381618 cites W3124068327 @default.
- W2914381618 cites W4292671038 @default.
- W2914381618 doi "https://doi.org/10.1016/j.physa.2019.01.026" @default.
- W2914381618 hasPublicationYear "2019" @default.
- W2914381618 type Work @default.
- W2914381618 sameAs 2914381618 @default.
- W2914381618 citedByCount "35" @default.
- W2914381618 countsByYear W29143816182019 @default.
- W2914381618 countsByYear W29143816182020 @default.
- W2914381618 countsByYear W29143816182021 @default.
- W2914381618 countsByYear W29143816182022 @default.
- W2914381618 countsByYear W29143816182023 @default.
- W2914381618 crossrefType "journal-article" @default.
- W2914381618 hasAuthorship W2914381618A5015005766 @default.
- W2914381618 hasAuthorship W2914381618A5017986280 @default.
- W2914381618 hasAuthorship W2914381618A5018633751 @default.
- W2914381618 hasAuthorship W2914381618A5041303337 @default.
- W2914381618 hasConcept C10138342 @default.
- W2914381618 hasConcept C105795698 @default.
- W2914381618 hasConcept C119857082 @default.
- W2914381618 hasConcept C12267149 @default.
- W2914381618 hasConcept C13280743 @default.
- W2914381618 hasConcept C149782125 @default.
- W2914381618 hasConcept C151406439 @default.
- W2914381618 hasConcept C154945302 @default.
- W2914381618 hasConcept C159149176 @default.
- W2914381618 hasConcept C162324750 @default.
- W2914381618 hasConcept C185798385 @default.
- W2914381618 hasConcept C205649164 @default.
- W2914381618 hasConcept C2776988154 @default.
- W2914381618 hasConcept C33923547 @default.
- W2914381618 hasConcept C41008148 @default.
- W2914381618 hasConcept C83546350 @default.
- W2914381618 hasConcept C91602232 @default.
- W2914381618 hasConceptScore W2914381618C10138342 @default.
- W2914381618 hasConceptScore W2914381618C105795698 @default.
- W2914381618 hasConceptScore W2914381618C119857082 @default.
- W2914381618 hasConceptScore W2914381618C12267149 @default.
- W2914381618 hasConceptScore W2914381618C13280743 @default.
- W2914381618 hasConceptScore W2914381618C149782125 @default.
- W2914381618 hasConceptScore W2914381618C151406439 @default.
- W2914381618 hasConceptScore W2914381618C154945302 @default.
- W2914381618 hasConceptScore W2914381618C159149176 @default.
- W2914381618 hasConceptScore W2914381618C162324750 @default.
- W2914381618 hasConceptScore W2914381618C185798385 @default.
- W2914381618 hasConceptScore W2914381618C205649164 @default.
- W2914381618 hasConceptScore W2914381618C2776988154 @default.
- W2914381618 hasConceptScore W2914381618C33923547 @default.
- W2914381618 hasConceptScore W2914381618C41008148 @default.
- W2914381618 hasConceptScore W2914381618C83546350 @default.
- W2914381618 hasConceptScore W2914381618C91602232 @default.
- W2914381618 hasFunder F4320321001 @default.
- W2914381618 hasFunder F4320321913 @default.
- W2914381618 hasLocation W29143816181 @default.