Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914411273> ?p ?o ?g. }
- W2914411273 endingPage "1549" @default.
- W2914411273 startingPage "1534" @default.
- W2914411273 abstract "For genomic predictors to be of use in genetic evaluation, their predicted accuracy must be a reliable indicator of their utility, and thus unbiased. The objective of this paper was to evaluate the accuracy of prediction of genomic breeding values (GBV) using different clustering strategies and response variables. Red Angus genotypes (n = 9,763) were imputed to a reference 50K panel. The influence of clustering method [k-means, k-medoids, principal component (PC) analysis on the numerator relationship matrix (A) and the identical-by-state genomic relationship matrix (G) as both data and covariance matrices, and random] and response variables [deregressed estimated breeding values (DEBV) and adjusted phenotypes] were evaluated for cross-validation. The GBV were estimated using a Bayes C model for all traits. Traits for DEBV included birth weight (BWT), marbling (MARB), rib-eye area (REA), and yearling weight (YWT). Adjusted phenotypes included BWT, YWT, and ultrasonically measured intramuscular fat percentage and REA. Prediction accuracies were estimated using the genetic correlation between GBV and associated response variable using a bivariate animal model. A simulation mimicking a cattle population, replicated 5 times, was conducted to quantify differences between true and estimated accuracies. The simulation used the same clustering methods and response variables, with the addition of 2 genotyping strategies (random and top 25% of individuals), and forward validation. The prediction accuracies were estimated similarly, and true accuracies were estimated as the correlation between the residuals of a bivariate model including true breeding value (TBV) and GBV. Using the adjusted Rand index, random clusters were clearly different from relationship-based clustering methods. In both real and simulated data, random clustering consistently led to the largest estimates of accuracy, while no method was consistently associated with more or less bias than other methods. In simulation, random genotyping led to higher estimated accuracies than selection of the top 25% of individuals. Interestingly, random genotyping seemed to overpredict true accuracy while selective genotyping tended to underpredict accuracy. When forward in time validation was used, DEBV led to less biased estimates of GBV accuracy. Results suggest the highest, least biased GBV accuracies are associated with random genotyping and DEBV." @default.
- W2914411273 created "2019-02-21" @default.
- W2914411273 creator A5007075789 @default.
- W2914411273 creator A5020004415 @default.
- W2914411273 creator A5037041466 @default.
- W2914411273 creator A5071295561 @default.
- W2914411273 date "2019-02-05" @default.
- W2914411273 modified "2023-09-26" @default.
- W2914411273 title "The impact of clustering methods for cross-validation, choice of phenotypes, and genotyping strategies on the accuracy of genomic predictions" @default.
- W2914411273 cites W1531814879 @default.
- W2914411273 cites W1969709687 @default.
- W2914411273 cites W1971484934 @default.
- W2914411273 cites W1999398820 @default.
- W2914411273 cites W2036156662 @default.
- W2914411273 cites W2053588621 @default.
- W2914411273 cites W2056866467 @default.
- W2914411273 cites W2067715889 @default.
- W2914411273 cites W2074043148 @default.
- W2914411273 cites W207502804 @default.
- W2914411273 cites W2077763475 @default.
- W2914411273 cites W2086941261 @default.
- W2914411273 cites W2087934204 @default.
- W2914411273 cites W2097840595 @default.
- W2914411273 cites W2103277984 @default.
- W2914411273 cites W2110974472 @default.
- W2914411273 cites W2119015447 @default.
- W2914411273 cites W2119372134 @default.
- W2914411273 cites W2126946018 @default.
- W2914411273 cites W2136865225 @default.
- W2914411273 cites W2141255466 @default.
- W2914411273 cites W2142727510 @default.
- W2914411273 cites W2148536112 @default.
- W2914411273 cites W2149385055 @default.
- W2914411273 cites W2152083226 @default.
- W2914411273 cites W2157467511 @default.
- W2914411273 cites W2162348269 @default.
- W2914411273 cites W2162835401 @default.
- W2914411273 cites W2164545188 @default.
- W2914411273 cites W2164567778 @default.
- W2914411273 cites W2165141658 @default.
- W2914411273 cites W2556049977 @default.
- W2914411273 cites W2610993356 @default.
- W2914411273 cites W2738178910 @default.
- W2914411273 cites W4235169531 @default.
- W2914411273 doi "https://doi.org/10.1093/jas/skz055" @default.
- W2914411273 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6447245" @default.
- W2914411273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30721970" @default.
- W2914411273 hasPublicationYear "2019" @default.
- W2914411273 type Work @default.
- W2914411273 sameAs 2914411273 @default.
- W2914411273 citedByCount "4" @default.
- W2914411273 countsByYear W29144112732020 @default.
- W2914411273 countsByYear W29144112732022 @default.
- W2914411273 countsByYear W29144112732023 @default.
- W2914411273 crossrefType "journal-article" @default.
- W2914411273 hasAuthorship W2914411273A5007075789 @default.
- W2914411273 hasAuthorship W2914411273A5020004415 @default.
- W2914411273 hasAuthorship W2914411273A5037041466 @default.
- W2914411273 hasAuthorship W2914411273A5071295561 @default.
- W2914411273 hasBestOaLocation W29144112732 @default.
- W2914411273 hasConcept C103545067 @default.
- W2914411273 hasConcept C105795698 @default.
- W2914411273 hasConcept C107673813 @default.
- W2914411273 hasConcept C126322002 @default.
- W2914411273 hasConcept C154945302 @default.
- W2914411273 hasConcept C168743327 @default.
- W2914411273 hasConcept C207201462 @default.
- W2914411273 hasConcept C27438332 @default.
- W2914411273 hasConcept C2908647359 @default.
- W2914411273 hasConcept C33923547 @default.
- W2914411273 hasConcept C41008148 @default.
- W2914411273 hasConcept C64341305 @default.
- W2914411273 hasConcept C71924100 @default.
- W2914411273 hasConcept C73555534 @default.
- W2914411273 hasConcept C81917197 @default.
- W2914411273 hasConcept C86803240 @default.
- W2914411273 hasConcept C95190672 @default.
- W2914411273 hasConcept C99454951 @default.
- W2914411273 hasConceptScore W2914411273C103545067 @default.
- W2914411273 hasConceptScore W2914411273C105795698 @default.
- W2914411273 hasConceptScore W2914411273C107673813 @default.
- W2914411273 hasConceptScore W2914411273C126322002 @default.
- W2914411273 hasConceptScore W2914411273C154945302 @default.
- W2914411273 hasConceptScore W2914411273C168743327 @default.
- W2914411273 hasConceptScore W2914411273C207201462 @default.
- W2914411273 hasConceptScore W2914411273C27438332 @default.
- W2914411273 hasConceptScore W2914411273C2908647359 @default.
- W2914411273 hasConceptScore W2914411273C33923547 @default.
- W2914411273 hasConceptScore W2914411273C41008148 @default.
- W2914411273 hasConceptScore W2914411273C64341305 @default.
- W2914411273 hasConceptScore W2914411273C71924100 @default.
- W2914411273 hasConceptScore W2914411273C73555534 @default.
- W2914411273 hasConceptScore W2914411273C81917197 @default.
- W2914411273 hasConceptScore W2914411273C86803240 @default.
- W2914411273 hasConceptScore W2914411273C95190672 @default.
- W2914411273 hasConceptScore W2914411273C99454951 @default.
- W2914411273 hasIssue "4" @default.
- W2914411273 hasLocation W29144112731 @default.