Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914415092> ?p ?o ?g. }
- W2914415092 abstract "Improving the accuracy of toxicity prediction models for liver injuries is a key element in evaluating the safety of drugs and chemicals. Mechanism-based information derived from expression (transcriptomic) data, in combination with machine-learning methods, promises to improve the accuracy and robustness of current toxicity prediction models. Deep neural networks (DNNs) have the advantage of automatically assembling the relevant features from a large number of input features. This makes them especially suitable for modeling transcriptomic data, which typically contain thousands of features. Here, we gauged gene- and pathway-level feature selection schemes using the DNN approach in predicting chemically induced liver injuries (biliary hyperplasia, fibrosis, and necrosis) from whole-genome DNA microarray data. The DNN models showed high predictive accuracy and endpoint specificity, with Matthews correlation coefficients for the three endpoints on 10-fold cross validation ranging from 0.69 to 0.90, with an average of 0.83 in the five best curated sets of either preselected genes or pathways. The DNN models performed more robustly than did random forest and support vector machine classifiers. The effects of feature selection scheme were negligible among the best-curated sets. Further evaluation of the models on their ability to predict the injury phenotype per se for non-chemically induced injuries revealed the robust performance of the DNN models across these additional external testing datasets. Thus, the DNN models learned features specific to the injury phenotype contained in the gene expression data." @default.
- W2914415092 created "2019-02-21" @default.
- W2914415092 creator A5030271505 @default.
- W2914415092 creator A5054201075 @default.
- W2914415092 creator A5068164786 @default.
- W2914415092 creator A5080102032 @default.
- W2914415092 date "2019-02-05" @default.
- W2914415092 modified "2023-10-16" @default.
- W2914415092 title "Deep Neural Network Models for Predicting Chemically Induced Liver Toxicity Endpoints From Transcriptomic Responses" @default.
- W2914415092 cites W1900191598 @default.
- W2914415092 cites W1999798000 @default.
- W2914415092 cites W2031838201 @default.
- W2914415092 cites W2052396986 @default.
- W2914415092 cites W2071898789 @default.
- W2914415092 cites W2076063813 @default.
- W2914415092 cites W2087466582 @default.
- W2914415092 cites W2094147349 @default.
- W2914415092 cites W2099375198 @default.
- W2914415092 cites W2099536383 @default.
- W2914415092 cites W2123454534 @default.
- W2914415092 cites W2131725992 @default.
- W2914415092 cites W2136922672 @default.
- W2914415092 cites W2138118291 @default.
- W2914415092 cites W2138646011 @default.
- W2914415092 cites W2149720473 @default.
- W2914415092 cites W2159436855 @default.
- W2914415092 cites W2188699551 @default.
- W2914415092 cites W2214074259 @default.
- W2914415092 cites W2218204925 @default.
- W2914415092 cites W2223517589 @default.
- W2914415092 cites W2225006655 @default.
- W2914415092 cites W2225235469 @default.
- W2914415092 cites W2234529989 @default.
- W2914415092 cites W2397757171 @default.
- W2914415092 cites W2468294892 @default.
- W2914415092 cites W2530138053 @default.
- W2914415092 cites W2582187633 @default.
- W2914415092 cites W2608029792 @default.
- W2914415092 cites W2612467560 @default.
- W2914415092 cites W2614122606 @default.
- W2914415092 cites W2615361741 @default.
- W2914415092 cites W2731260319 @default.
- W2914415092 cites W2788724289 @default.
- W2914415092 cites W2790102940 @default.
- W2914415092 cites W2802630768 @default.
- W2914415092 cites W2884581375 @default.
- W2914415092 cites W2900415432 @default.
- W2914415092 cites W2911964244 @default.
- W2914415092 cites W2913340405 @default.
- W2914415092 cites W2919115771 @default.
- W2914415092 cites W4239510810 @default.
- W2914415092 doi "https://doi.org/10.3389/fphar.2019.00042" @default.
- W2914415092 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6370634" @default.
- W2914415092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30804783" @default.
- W2914415092 hasPublicationYear "2019" @default.
- W2914415092 type Work @default.
- W2914415092 sameAs 2914415092 @default.
- W2914415092 citedByCount "27" @default.
- W2914415092 countsByYear W29144150922019 @default.
- W2914415092 countsByYear W29144150922020 @default.
- W2914415092 countsByYear W29144150922021 @default.
- W2914415092 countsByYear W29144150922022 @default.
- W2914415092 countsByYear W29144150922023 @default.
- W2914415092 crossrefType "journal-article" @default.
- W2914415092 hasAuthorship W2914415092A5030271505 @default.
- W2914415092 hasAuthorship W2914415092A5054201075 @default.
- W2914415092 hasAuthorship W2914415092A5068164786 @default.
- W2914415092 hasAuthorship W2914415092A5080102032 @default.
- W2914415092 hasBestOaLocation W29144150921 @default.
- W2914415092 hasConcept C104317684 @default.
- W2914415092 hasConcept C108583219 @default.
- W2914415092 hasConcept C119857082 @default.
- W2914415092 hasConcept C12267149 @default.
- W2914415092 hasConcept C124101348 @default.
- W2914415092 hasConcept C148483581 @default.
- W2914415092 hasConcept C150194340 @default.
- W2914415092 hasConcept C154945302 @default.
- W2914415092 hasConcept C162317418 @default.
- W2914415092 hasConcept C169258074 @default.
- W2914415092 hasConcept C41008148 @default.
- W2914415092 hasConcept C45804977 @default.
- W2914415092 hasConcept C50644808 @default.
- W2914415092 hasConcept C55493867 @default.
- W2914415092 hasConcept C60644358 @default.
- W2914415092 hasConcept C63479239 @default.
- W2914415092 hasConcept C66024118 @default.
- W2914415092 hasConcept C70721500 @default.
- W2914415092 hasConcept C86803240 @default.
- W2914415092 hasConceptScore W2914415092C104317684 @default.
- W2914415092 hasConceptScore W2914415092C108583219 @default.
- W2914415092 hasConceptScore W2914415092C119857082 @default.
- W2914415092 hasConceptScore W2914415092C12267149 @default.
- W2914415092 hasConceptScore W2914415092C124101348 @default.
- W2914415092 hasConceptScore W2914415092C148483581 @default.
- W2914415092 hasConceptScore W2914415092C150194340 @default.
- W2914415092 hasConceptScore W2914415092C154945302 @default.
- W2914415092 hasConceptScore W2914415092C162317418 @default.
- W2914415092 hasConceptScore W2914415092C169258074 @default.
- W2914415092 hasConceptScore W2914415092C41008148 @default.
- W2914415092 hasConceptScore W2914415092C45804977 @default.