Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914424871> ?p ?o ?g. }
- W2914424871 endingPage "81" @default.
- W2914424871 startingPage "75" @default.
- W2914424871 abstract "Different multivariate data analysis methods were investigated and compared to optimize rapid and non-destructive quantitative detection of beef adulteration with spoiled beef based on visible near-infrared hyperspectral imaging. Four multivariate statistical analysis methods including partial least squares regression (PLSR), support vector machine (SVM), least squares support vector machine (LS-SVM) and extreme learning machine (ELM) were carried out in developing full wavelength models. Good prediction was obtained by applying LS-SVM in the spectral range of 496–1000 nm with coefficients of determination (R2) of 0.94 and 0.94 as well as root-mean-squared errors (RMSEs) of 5.39% and 6.29% for calibration and prediction, respectively. To reduce the high dimensionality of hyperspectral data and to establish simplified models, a novel method named invasive weed optimization (IWO) was developed to select key wavelengths and it was compared with competitive adaptive reweighted sampling (CARS) and genetic algorithm (GA). Among the four multivariate analysis models based on important wavelengths determined by IWO, the LS-SVM simplified model performed best where R2 of 0.97 and 0.95 as well as RMSEs of 4.74% and 5.67% were attained for calibration and prediction, respectively. The optimum simplified model was applied to hyperspectral images in pixel-wise to visualize the distribution of spoiled beef adulterant in fresh minced beef. The current study demonstrated that it was feasible to use Vis-NIR hyperspectral imaging to detect homologous adulterant in beef." @default.
- W2914424871 created "2019-02-21" @default.
- W2914424871 creator A5007154188 @default.
- W2914424871 creator A5017541508 @default.
- W2914424871 creator A5030850869 @default.
- W2914424871 creator A5045801071 @default.
- W2914424871 date "2019-05-01" @default.
- W2914424871 modified "2023-10-15" @default.
- W2914424871 title "Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging" @default.
- W2914424871 cites W1146069309 @default.
- W2914424871 cites W1187661429 @default.
- W2914424871 cites W1967554761 @default.
- W2914424871 cites W1987891903 @default.
- W2914424871 cites W1990118221 @default.
- W2914424871 cites W1995283715 @default.
- W2914424871 cites W1998254135 @default.
- W2914424871 cites W2019115728 @default.
- W2914424871 cites W2019795873 @default.
- W2914424871 cites W2025014641 @default.
- W2914424871 cites W2025148441 @default.
- W2914424871 cites W2029637805 @default.
- W2914424871 cites W2040149934 @default.
- W2914424871 cites W2042290752 @default.
- W2914424871 cites W2042537664 @default.
- W2914424871 cites W2046653646 @default.
- W2914424871 cites W2050661001 @default.
- W2914424871 cites W2051556092 @default.
- W2914424871 cites W2051762037 @default.
- W2914424871 cites W2066536516 @default.
- W2914424871 cites W2084649778 @default.
- W2914424871 cites W2087379955 @default.
- W2914424871 cites W2090416506 @default.
- W2914424871 cites W2093234191 @default.
- W2914424871 cites W2096987757 @default.
- W2914424871 cites W2154751794 @default.
- W2914424871 cites W2168478992 @default.
- W2914424871 cites W2275931631 @default.
- W2914424871 cites W2412279540 @default.
- W2914424871 cites W2489941742 @default.
- W2914424871 cites W2627945719 @default.
- W2914424871 cites W2681668865 @default.
- W2914424871 cites W2725753369 @default.
- W2914424871 cites W2763487634 @default.
- W2914424871 cites W2791446393 @default.
- W2914424871 doi "https://doi.org/10.1016/j.meatsci.2019.01.010" @default.
- W2914424871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30716565" @default.
- W2914424871 hasPublicationYear "2019" @default.
- W2914424871 type Work @default.
- W2914424871 sameAs 2914424871 @default.
- W2914424871 citedByCount "53" @default.
- W2914424871 countsByYear W29144248712019 @default.
- W2914424871 countsByYear W29144248712020 @default.
- W2914424871 countsByYear W29144248712021 @default.
- W2914424871 countsByYear W29144248712022 @default.
- W2914424871 countsByYear W29144248712023 @default.
- W2914424871 crossrefType "journal-article" @default.
- W2914424871 hasAuthorship W2914424871A5007154188 @default.
- W2914424871 hasAuthorship W2914424871A5017541508 @default.
- W2914424871 hasAuthorship W2914424871A5030850869 @default.
- W2914424871 hasAuthorship W2914424871A5045801071 @default.
- W2914424871 hasConcept C105795698 @default.
- W2914424871 hasConcept C119857082 @default.
- W2914424871 hasConcept C12267149 @default.
- W2914424871 hasConcept C139945424 @default.
- W2914424871 hasConcept C151304367 @default.
- W2914424871 hasConcept C153180895 @default.
- W2914424871 hasConcept C154945302 @default.
- W2914424871 hasConcept C159078339 @default.
- W2914424871 hasConcept C161584116 @default.
- W2914424871 hasConcept C165838908 @default.
- W2914424871 hasConcept C185592680 @default.
- W2914424871 hasConcept C22354355 @default.
- W2914424871 hasConcept C2779567708 @default.
- W2914424871 hasConcept C33923547 @default.
- W2914424871 hasConcept C41008148 @default.
- W2914424871 hasConcept C43617362 @default.
- W2914424871 hasConceptScore W2914424871C105795698 @default.
- W2914424871 hasConceptScore W2914424871C119857082 @default.
- W2914424871 hasConceptScore W2914424871C12267149 @default.
- W2914424871 hasConceptScore W2914424871C139945424 @default.
- W2914424871 hasConceptScore W2914424871C151304367 @default.
- W2914424871 hasConceptScore W2914424871C153180895 @default.
- W2914424871 hasConceptScore W2914424871C154945302 @default.
- W2914424871 hasConceptScore W2914424871C159078339 @default.
- W2914424871 hasConceptScore W2914424871C161584116 @default.
- W2914424871 hasConceptScore W2914424871C165838908 @default.
- W2914424871 hasConceptScore W2914424871C185592680 @default.
- W2914424871 hasConceptScore W2914424871C22354355 @default.
- W2914424871 hasConceptScore W2914424871C2779567708 @default.
- W2914424871 hasConceptScore W2914424871C33923547 @default.
- W2914424871 hasConceptScore W2914424871C41008148 @default.
- W2914424871 hasConceptScore W2914424871C43617362 @default.
- W2914424871 hasFunder F4320335787 @default.
- W2914424871 hasLocation W29144248711 @default.
- W2914424871 hasLocation W29144248712 @default.
- W2914424871 hasOpenAccess W2914424871 @default.
- W2914424871 hasPrimaryLocation W29144248711 @default.
- W2914424871 hasRelatedWork W1969824989 @default.