Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914433647> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2914433647 abstract "Failures in optical transport networks usually result in lots of services being interrupted and a huge economic loss. If the failures can be predicted in advance, some actions can be conducted to avoid the above adverse consequences. Deep learning is a good technology of artificial intelligence, which can be used in many scenarios to replace humans’ activities. Event prediction is a typical scenario, where deep learning can be used based on a large dataset. Therefore, deep learning can be used in optical transport networks for failure prediction. However, dataset construction is an important problem for deep learning in optical transport networks, because there may be not enough data in reality. This paper proposes a deep-learning-based failure prediction (DLFP) algorithm that constructs available dataset based on data-augmentation for data training. DLFP algorithm is composed of alarm compression, data augmentation, and fully-connected back-propagation neural network (FCNN) algorithm. Besides, a benchmark algorithm (BA) without data augmentation is introduced. A training model is constructed based on massive real performance data and related alarm data within one month, which are collected from national backbone synchronous digital hierarchy (SDH) network with 274 nodes and 487 links in China. Then the training model is used with test dataset to verify the performance in terms of prediction accuracy. Evaluation results show that the proposed algorithm is able to reach better performance for failure prediction compared with the benchmark without data augmentation." @default.
- W2914433647 created "2019-02-21" @default.
- W2914433647 creator A5030811766 @default.
- W2914433647 creator A5036501863 @default.
- W2914433647 creator A5062665642 @default.
- W2914433647 creator A5073501391 @default.
- W2914433647 creator A5082371138 @default.
- W2914433647 date "2019-02-14" @default.
- W2914433647 modified "2023-09-25" @default.
- W2914433647 title "Deep-learning-based failure prediction with data augmentation in optical transport networks" @default.
- W2914433647 cites W2738710562 @default.
- W2914433647 cites W2768093201 @default.
- W2914433647 doi "https://doi.org/10.1117/12.2523136" @default.
- W2914433647 hasPublicationYear "2019" @default.
- W2914433647 type Work @default.
- W2914433647 sameAs 2914433647 @default.
- W2914433647 citedByCount "3" @default.
- W2914433647 countsByYear W29144336472020 @default.
- W2914433647 crossrefType "proceedings-article" @default.
- W2914433647 hasAuthorship W2914433647A5030811766 @default.
- W2914433647 hasAuthorship W2914433647A5036501863 @default.
- W2914433647 hasAuthorship W2914433647A5062665642 @default.
- W2914433647 hasAuthorship W2914433647A5073501391 @default.
- W2914433647 hasAuthorship W2914433647A5082371138 @default.
- W2914433647 hasConcept C108583219 @default.
- W2914433647 hasConcept C119857082 @default.
- W2914433647 hasConcept C124101348 @default.
- W2914433647 hasConcept C13280743 @default.
- W2914433647 hasConcept C154945302 @default.
- W2914433647 hasConcept C16910744 @default.
- W2914433647 hasConcept C185798385 @default.
- W2914433647 hasConcept C199360897 @default.
- W2914433647 hasConcept C205649164 @default.
- W2914433647 hasConcept C41008148 @default.
- W2914433647 hasConcept C50644808 @default.
- W2914433647 hasConcept C67186912 @default.
- W2914433647 hasConcept C75684735 @default.
- W2914433647 hasConcept C77088390 @default.
- W2914433647 hasConceptScore W2914433647C108583219 @default.
- W2914433647 hasConceptScore W2914433647C119857082 @default.
- W2914433647 hasConceptScore W2914433647C124101348 @default.
- W2914433647 hasConceptScore W2914433647C13280743 @default.
- W2914433647 hasConceptScore W2914433647C154945302 @default.
- W2914433647 hasConceptScore W2914433647C16910744 @default.
- W2914433647 hasConceptScore W2914433647C185798385 @default.
- W2914433647 hasConceptScore W2914433647C199360897 @default.
- W2914433647 hasConceptScore W2914433647C205649164 @default.
- W2914433647 hasConceptScore W2914433647C41008148 @default.
- W2914433647 hasConceptScore W2914433647C50644808 @default.
- W2914433647 hasConceptScore W2914433647C67186912 @default.
- W2914433647 hasConceptScore W2914433647C75684735 @default.
- W2914433647 hasConceptScore W2914433647C77088390 @default.
- W2914433647 hasLocation W29144336471 @default.
- W2914433647 hasOpenAccess W2914433647 @default.
- W2914433647 hasPrimaryLocation W29144336471 @default.
- W2914433647 hasRelatedWork W1965751562 @default.
- W2914433647 hasRelatedWork W2563118655 @default.
- W2914433647 hasRelatedWork W2592989717 @default.
- W2914433647 hasRelatedWork W2598842688 @default.
- W2914433647 hasRelatedWork W2794994399 @default.
- W2914433647 hasRelatedWork W2901848480 @default.
- W2914433647 hasRelatedWork W2904088061 @default.
- W2914433647 hasRelatedWork W2904290903 @default.
- W2914433647 hasRelatedWork W2913226484 @default.
- W2914433647 hasRelatedWork W3039624821 @default.
- W2914433647 hasRelatedWork W3107146722 @default.
- W2914433647 hasRelatedWork W3114892367 @default.
- W2914433647 hasRelatedWork W3115061052 @default.
- W2914433647 hasRelatedWork W3159822173 @default.
- W2914433647 hasRelatedWork W3166861698 @default.
- W2914433647 hasRelatedWork W3167900581 @default.
- W2914433647 hasRelatedWork W3183801287 @default.
- W2914433647 hasRelatedWork W3185429310 @default.
- W2914433647 hasRelatedWork W3197908690 @default.
- W2914433647 hasRelatedWork W3199005531 @default.
- W2914433647 isParatext "false" @default.
- W2914433647 isRetracted "false" @default.
- W2914433647 magId "2914433647" @default.
- W2914433647 workType "article" @default.