Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914440804> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2914440804 abstract "Given a multigraph $G=(V,E)$, the {em edge-coloring problem} (ECP) is to color the edges of $G$ with the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is called the {em fractional edge-coloring problem} (FECP). In the literature, the optimal value of ECP (resp. FECP) is called the {em chromatic index} (resp. {em fractional chromatic index}) of $G$, denoted by $chi'(G)$ (resp. $chi^*(G)$). Let $Delta(G)$ be the maximum degree of $G$ and let [Gamma(G)=max Big{frac{2|E(U)|}{|U|-1}:,, U subseteq V, ,, |U|ge 3 hskip 2mm {rm and hskip 2mm odd} Big},] where $E(U)$ is the set of all edges of $G$ with both ends in $U$. Clearly, $max{Delta(G), , lceil Gamma(G) rceil }$ is a lower bound for $chi'(G)$. As shown by Seymour, $chi^*(G)=max{Delta(G), , Gamma(G)}$. In the 1970s Goldberg and Seymour independently conjectured that $chi'(G) le max{Delta(G)+1, , lceil Gamma(G) rceil}$. Over the past four decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated a significant body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for $chi'(G)$, so an analogue to Vizing's theorem on edge-colorings of simple graphs, a fundamental result in graph theory, holds for multigraphs; second, although it is $NP$-hard in general to determine $chi'(G)$, we can approximate it within one of its true value, and find it exactly in polynomial time when $Gamma(G)>Delta(G)$; third, every multigraph $G$ satisfies $chi'(G)-chi^*(G) le 1$, so FECP has a fascinating integer rounding property." @default.
- W2914440804 created "2019-02-21" @default.
- W2914440804 creator A5018517775 @default.
- W2914440804 creator A5042737832 @default.
- W2914440804 creator A5065410958 @default.
- W2914440804 date "2019-01-29" @default.
- W2914440804 modified "2023-10-17" @default.
- W2914440804 title "Proof of the Goldberg-Seymour Conjecture on Edge-Colorings of Multigraphs" @default.
- W2914440804 cites W1963547452 @default.
- W2914440804 cites W1972212864 @default.
- W2914440804 cites W1980334956 @default.
- W2914440804 cites W1987475644 @default.
- W2914440804 cites W1999715792 @default.
- W2914440804 cites W2032201799 @default.
- W2914440804 cites W2037535744 @default.
- W2914440804 cites W2042274567 @default.
- W2914440804 cites W2044004462 @default.
- W2914440804 cites W2064383783 @default.
- W2914440804 cites W2065218154 @default.
- W2914440804 cites W2102669784 @default.
- W2914440804 cites W2110489378 @default.
- W2914440804 cites W2140029748 @default.
- W2914440804 cites W2163809252 @default.
- W2914440804 cites W2530720229 @default.
- W2914440804 cites W2963917233 @default.
- W2914440804 cites W2988480584 @default.
- W2914440804 doi "https://doi.org/10.48550/arxiv.1901.10316" @default.
- W2914440804 hasPublicationYear "2019" @default.
- W2914440804 type Work @default.
- W2914440804 sameAs 2914440804 @default.
- W2914440804 citedByCount "5" @default.
- W2914440804 countsByYear W29144408042018 @default.
- W2914440804 countsByYear W29144408042020 @default.
- W2914440804 countsByYear W29144408042023 @default.
- W2914440804 crossrefType "posted-content" @default.
- W2914440804 hasAuthorship W2914440804A5018517775 @default.
- W2914440804 hasAuthorship W2914440804A5042737832 @default.
- W2914440804 hasAuthorship W2914440804A5065410958 @default.
- W2914440804 hasBestOaLocation W29144408041 @default.
- W2914440804 hasConcept C114614502 @default.
- W2914440804 hasConcept C118615104 @default.
- W2914440804 hasConcept C123809776 @default.
- W2914440804 hasConcept C132525143 @default.
- W2914440804 hasConcept C149530733 @default.
- W2914440804 hasConcept C17758045 @default.
- W2914440804 hasConcept C199360897 @default.
- W2914440804 hasConcept C203776342 @default.
- W2914440804 hasConcept C2780990831 @default.
- W2914440804 hasConcept C33923547 @default.
- W2914440804 hasConcept C41008148 @default.
- W2914440804 hasConcept C97137487 @default.
- W2914440804 hasConceptScore W2914440804C114614502 @default.
- W2914440804 hasConceptScore W2914440804C118615104 @default.
- W2914440804 hasConceptScore W2914440804C123809776 @default.
- W2914440804 hasConceptScore W2914440804C132525143 @default.
- W2914440804 hasConceptScore W2914440804C149530733 @default.
- W2914440804 hasConceptScore W2914440804C17758045 @default.
- W2914440804 hasConceptScore W2914440804C199360897 @default.
- W2914440804 hasConceptScore W2914440804C203776342 @default.
- W2914440804 hasConceptScore W2914440804C2780990831 @default.
- W2914440804 hasConceptScore W2914440804C33923547 @default.
- W2914440804 hasConceptScore W2914440804C41008148 @default.
- W2914440804 hasConceptScore W2914440804C97137487 @default.
- W2914440804 hasLocation W29144408041 @default.
- W2914440804 hasLocation W29144408042 @default.
- W2914440804 hasOpenAccess W2914440804 @default.
- W2914440804 hasPrimaryLocation W29144408041 @default.
- W2914440804 hasRelatedWork W1972212864 @default.
- W2914440804 hasRelatedWork W2024593554 @default.
- W2914440804 hasRelatedWork W2067688212 @default.
- W2914440804 hasRelatedWork W2751086833 @default.
- W2914440804 hasRelatedWork W2963637355 @default.
- W2914440804 hasRelatedWork W3199513834 @default.
- W2914440804 hasRelatedWork W3211453092 @default.
- W2914440804 hasRelatedWork W4205492604 @default.
- W2914440804 hasRelatedWork W4322716708 @default.
- W2914440804 hasRelatedWork W4385970314 @default.
- W2914440804 isParatext "false" @default.
- W2914440804 isRetracted "false" @default.
- W2914440804 magId "2914440804" @default.
- W2914440804 workType "article" @default.