Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914442069> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2914442069 endingPage "215" @default.
- W2914442069 startingPage "207" @default.
- W2914442069 abstract "The increasing size, variety, rate of growth and change, and complexity of network data has warranted advanced network analysis and services. Tools that provide automated analysis through traditional or advanced signature-based systems or machine learning classifiers suffer from practical difficulties. These tools fail to provide comprehensive and contextual insights into the network when put to practical use in operational cyber security. In this paper, we present an effective tool for network security and traffic analysis that uses high-performance data analytics based on a class of unsupervised learning algorithms called tensor decompositions. The tool aims to provide a scalable analysis of the network traffic data and also reduce the cognitive load of network analysts and be network-expert-friendly by presenting clear and actionable insights into the network. In this paper, we demonstrate the successful use of the tool in two completely diverse operational cyber security environments, namely, (1) security operations center (SOC) for the SCinet network at the SuperComputing (SC) Conference in 2016 and 2017 and (2) Reservoir Labs’ Local Area Network (LAN). In each of these environments, we produce actionable results for cyber security specialists including (but not limited to) (1) finding malicious network traffic involving internal and external attackers using port scans, SSH brute forcing, and NTP amplification attacks, (2) uncovering obfuscated network threats such as data exfiltration using DNS port and using ICMP traffic, and (3) finding network misconfiguration and performance degradation patterns." @default.
- W2914442069 created "2019-02-21" @default.
- W2914442069 creator A5000399563 @default.
- W2914442069 creator A5003537070 @default.
- W2914442069 creator A5006882381 @default.
- W2914442069 creator A5024685370 @default.
- W2914442069 creator A5036923363 @default.
- W2914442069 date "2019-07-01" @default.
- W2914442069 modified "2023-10-01" @default.
- W2914442069 title "Enhancing Network Visibility and Security through Tensor Analysis" @default.
- W2914442069 cites W1516506771 @default.
- W2914442069 cites W2024356620 @default.
- W2914442069 doi "https://doi.org/10.1016/j.future.2019.01.039" @default.
- W2914442069 hasPublicationYear "2019" @default.
- W2914442069 type Work @default.
- W2914442069 sameAs 2914442069 @default.
- W2914442069 citedByCount "10" @default.
- W2914442069 countsByYear W29144420692019 @default.
- W2914442069 countsByYear W29144420692020 @default.
- W2914442069 countsByYear W29144420692021 @default.
- W2914442069 countsByYear W29144420692022 @default.
- W2914442069 countsByYear W29144420692023 @default.
- W2914442069 crossrefType "journal-article" @default.
- W2914442069 hasAuthorship W2914442069A5000399563 @default.
- W2914442069 hasAuthorship W2914442069A5003537070 @default.
- W2914442069 hasAuthorship W2914442069A5006882381 @default.
- W2914442069 hasAuthorship W2914442069A5024685370 @default.
- W2914442069 hasAuthorship W2914442069A5036923363 @default.
- W2914442069 hasBestOaLocation W29144420691 @default.
- W2914442069 hasConcept C158379750 @default.
- W2914442069 hasConcept C182590292 @default.
- W2914442069 hasConcept C195219913 @default.
- W2914442069 hasConcept C31258907 @default.
- W2914442069 hasConcept C38652104 @default.
- W2914442069 hasConcept C41008148 @default.
- W2914442069 hasConcept C88796919 @default.
- W2914442069 hasConceptScore W2914442069C158379750 @default.
- W2914442069 hasConceptScore W2914442069C182590292 @default.
- W2914442069 hasConceptScore W2914442069C195219913 @default.
- W2914442069 hasConceptScore W2914442069C31258907 @default.
- W2914442069 hasConceptScore W2914442069C38652104 @default.
- W2914442069 hasConceptScore W2914442069C41008148 @default.
- W2914442069 hasConceptScore W2914442069C88796919 @default.
- W2914442069 hasLocation W29144420691 @default.
- W2914442069 hasLocation W29144420692 @default.
- W2914442069 hasOpenAccess W2914442069 @default.
- W2914442069 hasPrimaryLocation W29144420691 @default.
- W2914442069 hasRelatedWork W1548704439 @default.
- W2914442069 hasRelatedWork W1991933941 @default.
- W2914442069 hasRelatedWork W2130966263 @default.
- W2914442069 hasRelatedWork W2351021960 @default.
- W2914442069 hasRelatedWork W2376613537 @default.
- W2914442069 hasRelatedWork W2914442069 @default.
- W2914442069 hasRelatedWork W3012065231 @default.
- W2914442069 hasRelatedWork W4200489280 @default.
- W2914442069 hasRelatedWork W54309930 @default.
- W2914442069 hasRelatedWork W2799470529 @default.
- W2914442069 hasVolume "96" @default.
- W2914442069 isParatext "false" @default.
- W2914442069 isRetracted "false" @default.
- W2914442069 magId "2914442069" @default.
- W2914442069 workType "article" @default.