Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914442620> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2914442620 abstract "In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an effort to better understand under which conditions such an indexing scheme is possible. This led to the introduction of Wheeler graphs [Gagie it et al., Theor. Comput. Sci., 2017]. A Wheeler graph is a directed graph with edge labels which satisfies two simple axioms. Wheeler graphs can be indexed in a way which is space efficient and allows for fast traversal. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs. Here we answer the open question of whether or not there exists an efficient algorithm for recognizing if a graph is a Wheeler graph. We demonstrate:(i) Recognizing if a graph is a Wheeler graph is NP-complete for any edge label alphabet of size $sigma geq 2$, even for DAGs. It can be solved in linear time for $sigma =1$; (ii) An optimization variant called Wheeler Graph Violation (WGV) which aims to remove the minimum number of edges needed to obtain a Wheeler graph is APX-hard, even for DAGs. Hence, unless P = NP, there exists constant $C > 1$ such that there is no $C$-approximation algorithm. We show conditioned on the Unique Games Conjecture, for every constant $C geq 1$, it is NP-hard to find a $C$-approximation to WGV; (iii) The Wheeler Subgraph problem (WS) which aims to find the largest Wheeler subgraph is in APX for $sigma=O(1)$; (iv) For the above problems there exist efficient exponential time exact algorithms, relying on graph isomorphism being computed in strictly sub-exponential time; (v) A class of graphs where the recognition problem is polynomial time solvable." @default.
- W2914442620 created "2019-02-21" @default.
- W2914442620 creator A5026282036 @default.
- W2914442620 creator A5049669178 @default.
- W2914442620 date "2019-02-05" @default.
- W2914442620 modified "2023-09-27" @default.
- W2914442620 title "On the Hardness and Inapproximability of Recognizing Wheeler Graphs" @default.
- W2914442620 cites W1520575986 @default.
- W2914442620 cites W1964678328 @default.
- W2914442620 cites W1964700557 @default.
- W2914442620 cites W1973322735 @default.
- W2914442620 cites W2016590962 @default.
- W2914442620 cites W2017265236 @default.
- W2914442620 cites W2018866650 @default.
- W2914442620 cites W2038647778 @default.
- W2914442620 cites W2050635028 @default.
- W2914442620 cites W2051163637 @default.
- W2914442620 cites W2099964107 @default.
- W2914442620 cites W2143668983 @default.
- W2914442620 cites W2159647614 @default.
- W2914442620 cites W2161488606 @default.
- W2914442620 cites W2592570088 @default.
- W2914442620 cites W2899939541 @default.
- W2914442620 cites W3002181530 @default.
- W2914442620 cites W79078609 @default.
- W2914442620 hasPublicationYear "2019" @default.
- W2914442620 type Work @default.
- W2914442620 sameAs 2914442620 @default.
- W2914442620 citedByCount "5" @default.
- W2914442620 countsByYear W29144426202019 @default.
- W2914442620 countsByYear W29144426202020 @default.
- W2914442620 countsByYear W29144426202021 @default.
- W2914442620 crossrefType "posted-content" @default.
- W2914442620 hasAuthorship W2914442620A5026282036 @default.
- W2914442620 hasAuthorship W2914442620A5049669178 @default.
- W2914442620 hasConcept C114614502 @default.
- W2914442620 hasConcept C118615104 @default.
- W2914442620 hasConcept C132525143 @default.
- W2914442620 hasConcept C2780990831 @default.
- W2914442620 hasConcept C33923547 @default.
- W2914442620 hasConceptScore W2914442620C114614502 @default.
- W2914442620 hasConceptScore W2914442620C118615104 @default.
- W2914442620 hasConceptScore W2914442620C132525143 @default.
- W2914442620 hasConceptScore W2914442620C2780990831 @default.
- W2914442620 hasConceptScore W2914442620C33923547 @default.
- W2914442620 hasLocation W29144426201 @default.
- W2914442620 hasOpenAccess W2914442620 @default.
- W2914442620 hasPrimaryLocation W29144426201 @default.
- W2914442620 hasRelatedWork W2026005637 @default.
- W2914442620 hasRelatedWork W2075240586 @default.
- W2914442620 hasRelatedWork W2082242399 @default.
- W2914442620 hasRelatedWork W2127485201 @default.
- W2914442620 hasRelatedWork W2527421147 @default.
- W2914442620 hasRelatedWork W2592557380 @default.
- W2914442620 hasRelatedWork W2734071646 @default.
- W2914442620 hasRelatedWork W2759740247 @default.
- W2914442620 hasRelatedWork W2785736399 @default.
- W2914442620 hasRelatedWork W2897988526 @default.
- W2914442620 hasRelatedWork W2906924999 @default.
- W2914442620 hasRelatedWork W2919465812 @default.
- W2914442620 hasRelatedWork W2952039516 @default.
- W2914442620 hasRelatedWork W2952874894 @default.
- W2914442620 hasRelatedWork W2962825993 @default.
- W2914442620 hasRelatedWork W2977558816 @default.
- W2914442620 hasRelatedWork W3009638044 @default.
- W2914442620 hasRelatedWork W3128494953 @default.
- W2914442620 hasRelatedWork W3158219244 @default.
- W2914442620 hasRelatedWork W48399392 @default.
- W2914442620 isParatext "false" @default.
- W2914442620 isRetracted "false" @default.
- W2914442620 magId "2914442620" @default.
- W2914442620 workType "article" @default.