Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914444914> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2914444914 endingPage "232" @default.
- W2914444914 startingPage "224" @default.
- W2914444914 abstract "Abstract There has been a significant increase from 2010 to 2016 in the number of people suffering from spine problems. The automatic image segmentation of the spine obtained from a computed tomography (CT) image is important for diagnosing spine conditions and for performing surgery with computer-assisted surgery systems. The spine has a complex anatomy that consists of 33 vertebrae, 23 intervertebral disks, the spinal cord, and connecting ribs. As a result, the spinal surgeon is faced with the challenge of needing a robust algorithm to segment and create a model of the spine. In this study, we developed a fully automatic segmentation method to segment the spine from CT images, and we compared our segmentation results with reference segmentations obtained by well-known methods. We use a hybrid method. This method combines the convolutional neural network (CNN) and fully convolutional network (FCN), and utilizes class redundancy as a soft constraint to greatly improve the segmentation results. The proposed method was found to significantly enhance the accuracy of the segmentation results and the system processing time. Our comparison was based on 12 measurements: the Dice coefficient (94%), Jaccard index (93%), volumetric similarity (96%), sensitivity (97%), specificity (99%), precision (over segmentation 8.3 and under segmentation 2.6), accuracy (99%), Matthews correlation coefficient (0.93), mean surface distance (0.16 mm), Hausdorff distance (7.4 mm), and global consistency error (0.02). We experimented with CT images from 32 patients, and the experimental results demonstrated the efficiency of the proposed method. Highlights A method to enhance the accuracy of spine segmentation from CT data was proposed. The proposed method uses Convolutional Neural Network via redundant generation of class labels. Experiments show the segmentation accuracy has been enhanced." @default.
- W2914444914 created "2019-02-21" @default.
- W2914444914 creator A5010034247 @default.
- W2914444914 creator A5028544277 @default.
- W2914444914 creator A5030942625 @default.
- W2914444914 date "2019-02-13" @default.
- W2914444914 modified "2023-09-25" @default.
- W2914444914 title "Automatic spine segmentation from CT images using Convolutional Neural Network via redundant generation of class labels" @default.
- W2914444914 cites W1901129140 @default.
- W2914444914 cites W1969380437 @default.
- W2914444914 cites W1979064019 @default.
- W2914444914 cites W1983601769 @default.
- W2914444914 cites W2074395887 @default.
- W2914444914 cites W2084806705 @default.
- W2914444914 cites W2101211008 @default.
- W2914444914 cites W2108824264 @default.
- W2914444914 cites W2115720090 @default.
- W2914444914 cites W2118386984 @default.
- W2914444914 cites W2147800946 @default.
- W2914444914 cites W2165854452 @default.
- W2914444914 cites W2460909307 @default.
- W2914444914 cites W4238433204 @default.
- W2914444914 cites W814925967 @default.
- W2914444914 doi "https://doi.org/10.1016/j.jcde.2018.05.002" @default.
- W2914444914 hasPublicationYear "2019" @default.
- W2914444914 type Work @default.
- W2914444914 sameAs 2914444914 @default.
- W2914444914 citedByCount "48" @default.
- W2914444914 countsByYear W29144449142019 @default.
- W2914444914 countsByYear W29144449142020 @default.
- W2914444914 countsByYear W29144449142021 @default.
- W2914444914 countsByYear W29144449142022 @default.
- W2914444914 countsByYear W29144449142023 @default.
- W2914444914 crossrefType "journal-article" @default.
- W2914444914 hasAuthorship W2914444914A5010034247 @default.
- W2914444914 hasAuthorship W2914444914A5028544277 @default.
- W2914444914 hasAuthorship W2914444914A5030942625 @default.
- W2914444914 hasBestOaLocation W29144449141 @default.
- W2914444914 hasConcept C124504099 @default.
- W2914444914 hasConcept C141898687 @default.
- W2914444914 hasConcept C153180895 @default.
- W2914444914 hasConcept C154945302 @default.
- W2914444914 hasConcept C163892561 @default.
- W2914444914 hasConcept C203519979 @default.
- W2914444914 hasConcept C31972630 @default.
- W2914444914 hasConcept C41008148 @default.
- W2914444914 hasConcept C50644808 @default.
- W2914444914 hasConcept C81363708 @default.
- W2914444914 hasConcept C89600930 @default.
- W2914444914 hasConceptScore W2914444914C124504099 @default.
- W2914444914 hasConceptScore W2914444914C141898687 @default.
- W2914444914 hasConceptScore W2914444914C153180895 @default.
- W2914444914 hasConceptScore W2914444914C154945302 @default.
- W2914444914 hasConceptScore W2914444914C163892561 @default.
- W2914444914 hasConceptScore W2914444914C203519979 @default.
- W2914444914 hasConceptScore W2914444914C31972630 @default.
- W2914444914 hasConceptScore W2914444914C41008148 @default.
- W2914444914 hasConceptScore W2914444914C50644808 @default.
- W2914444914 hasConceptScore W2914444914C81363708 @default.
- W2914444914 hasConceptScore W2914444914C89600930 @default.
- W2914444914 hasFunder F4320327819 @default.
- W2914444914 hasIssue "2" @default.
- W2914444914 hasLocation W29144449141 @default.
- W2914444914 hasOpenAccess W2914444914 @default.
- W2914444914 hasPrimaryLocation W29144449141 @default.
- W2914444914 hasRelatedWork W2769435486 @default.
- W2914444914 hasRelatedWork W2789290087 @default.
- W2914444914 hasRelatedWork W2969790209 @default.
- W2914444914 hasRelatedWork W3048266091 @default.
- W2914444914 hasRelatedWork W3118494652 @default.
- W2914444914 hasRelatedWork W4200528772 @default.
- W2914444914 hasRelatedWork W4284693175 @default.
- W2914444914 hasRelatedWork W4292430048 @default.
- W2914444914 hasRelatedWork W4313566628 @default.
- W2914444914 hasRelatedWork W4315491877 @default.
- W2914444914 hasVolume "6" @default.
- W2914444914 isParatext "false" @default.
- W2914444914 isRetracted "false" @default.
- W2914444914 magId "2914444914" @default.
- W2914444914 workType "article" @default.