Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914445712> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2914445712 endingPage "29" @default.
- W2914445712 startingPage "1" @default.
- W2914445712 abstract "This is a continuation of the paper [16, Math. Models Methods Appl. Sci. 28 (2018) 337–386] on the study of the large time behavior of the weak solution to the free boundary problem for one-dimensional isentropic compressible Navier–Stokes equations with degenerate viscosity and vacuum. Under appropriate smallness conditions on the initial data (initial energy), we extend the results in [16, Math. Models Methods Appl. Sci. 28 (2018) 337–386] to the case γ > 1 and θ < min { 1 , γ − 1 2 } . Clearly, the optimal decay rate of the density function along with its behavior near the interfaces is studied. In the meanwhile, we obtain also sharper decay rates for the norms in terms of the velocity function. The proof is based on the standard line method. The key is to establish some new global-in-time weighted (both in time and space) estimates uniformly up to the vacuum boundary, which ensures the uniform convergence of the approximate solutions. Cet article est une suite du papier [16] sur l'étude du comportment en grand temps de la solution faible au problème aux limites libres pour les équations de Navier–Stokes compressibles isentropiques unidimensionnelles avec viscosité dégénérée et vide. Dans les conditions minimales appropriées pour les données initiales, nous généralisons les résultats de [16] dans les cas où γ > 1 et θ < min { 1 , γ − 1 2 } sont satisfaits en même temps. Plus précisément, nous étudions le taux de décroissance optimal de la fonction de densité et son comportement à proximité de l'interface libre. En même temps, nous obtenons également des meilleures taux en matière de décroissance de la fonction de vitesse. La preuve est basée sur la méthode des différence limitée stantard. Le point clé est d'établir des nouvelles estimations pondérées du temps et de l'espace, ce qui assure la convergence uniforme des solutions approchées." @default.
- W2914445712 created "2019-02-21" @default.
- W2914445712 creator A5057731135 @default.
- W2914445712 creator A5087305235 @default.
- W2914445712 date "2019-04-01" @default.
- W2914445712 modified "2023-10-14" @default.
- W2914445712 title "Optimal decay rates on compressible Navier–Stokes equations with degenerate viscosity and vacuum" @default.
- W2914445712 cites W1665737553 @default.
- W2914445712 cites W1969543804 @default.
- W2914445712 cites W1979393169 @default.
- W2914445712 cites W1987671809 @default.
- W2914445712 cites W1989231059 @default.
- W2914445712 cites W1995069960 @default.
- W2914445712 cites W1999887899 @default.
- W2914445712 cites W2000708166 @default.
- W2914445712 cites W2008165781 @default.
- W2914445712 cites W2008616327 @default.
- W2914445712 cites W2013185524 @default.
- W2914445712 cites W2014940519 @default.
- W2914445712 cites W2025578652 @default.
- W2914445712 cites W2030587235 @default.
- W2914445712 cites W2032309950 @default.
- W2914445712 cites W2064652194 @default.
- W2914445712 cites W2066993384 @default.
- W2914445712 cites W2088954885 @default.
- W2914445712 cites W2134762556 @default.
- W2914445712 cites W2151847866 @default.
- W2914445712 cites W2160365034 @default.
- W2914445712 cites W2168060022 @default.
- W2914445712 cites W2169827385 @default.
- W2914445712 cites W2183823452 @default.
- W2914445712 cites W2354729837 @default.
- W2914445712 cites W2526143672 @default.
- W2914445712 cites W2766666296 @default.
- W2914445712 doi "https://doi.org/10.1016/j.matpur.2019.01.014" @default.
- W2914445712 hasPublicationYear "2019" @default.
- W2914445712 type Work @default.
- W2914445712 sameAs 2914445712 @default.
- W2914445712 citedByCount "2" @default.
- W2914445712 countsByYear W29144457122022 @default.
- W2914445712 countsByYear W29144457122023 @default.
- W2914445712 crossrefType "journal-article" @default.
- W2914445712 hasAuthorship W2914445712A5057731135 @default.
- W2914445712 hasAuthorship W2914445712A5087305235 @default.
- W2914445712 hasBestOaLocation W29144457121 @default.
- W2914445712 hasConcept C121332964 @default.
- W2914445712 hasConcept C127172972 @default.
- W2914445712 hasConcept C2781278361 @default.
- W2914445712 hasConcept C57879066 @default.
- W2914445712 hasConcept C62520636 @default.
- W2914445712 hasConcept C72319582 @default.
- W2914445712 hasConcept C84655787 @default.
- W2914445712 hasConcept C97355855 @default.
- W2914445712 hasConceptScore W2914445712C121332964 @default.
- W2914445712 hasConceptScore W2914445712C127172972 @default.
- W2914445712 hasConceptScore W2914445712C2781278361 @default.
- W2914445712 hasConceptScore W2914445712C57879066 @default.
- W2914445712 hasConceptScore W2914445712C62520636 @default.
- W2914445712 hasConceptScore W2914445712C72319582 @default.
- W2914445712 hasConceptScore W2914445712C84655787 @default.
- W2914445712 hasConceptScore W2914445712C97355855 @default.
- W2914445712 hasFunder F4320321001 @default.
- W2914445712 hasFunder F4320322725 @default.
- W2914445712 hasLocation W29144457121 @default.
- W2914445712 hasOpenAccess W2914445712 @default.
- W2914445712 hasPrimaryLocation W29144457121 @default.
- W2914445712 hasRelatedWork W1509602638 @default.
- W2914445712 hasRelatedWork W1806863920 @default.
- W2914445712 hasRelatedWork W1999064360 @default.
- W2914445712 hasRelatedWork W2008165781 @default.
- W2914445712 hasRelatedWork W2086044784 @default.
- W2914445712 hasRelatedWork W2134762556 @default.
- W2914445712 hasRelatedWork W2367460844 @default.
- W2914445712 hasRelatedWork W2596127409 @default.
- W2914445712 hasRelatedWork W4210530777 @default.
- W2914445712 hasRelatedWork W4225716517 @default.
- W2914445712 hasVolume "124" @default.
- W2914445712 isParatext "false" @default.
- W2914445712 isRetracted "false" @default.
- W2914445712 magId "2914445712" @default.
- W2914445712 workType "article" @default.