Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914446996> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2914446996 endingPage "144" @default.
- W2914446996 startingPage "117" @default.
- W2914446996 abstract "The paper represents the advanced NLP learning resources in context of Indian languages: Hindi and Urdu. The research is based on domain-specific platforms which covers health, tourism, and agriculture corpora with 60 k sentences. With these corpora, some NLP-based learning resources such as stemmer, lemmatizer, POS tagger, and MWE identifier have been developed. All of these resources are connected in sequential form, and they are beneficial in information retrieval, language translation, handling word sense disambiguation, and many other useful applications. Stemming is first and foremost process of root extraction from given input word, but sometimes it does not produce valid root word. So the problem of stemming has been resolved by developing Lemmatizer, which produces the exact root by adding some rules in stemmed output. Eventually, statistical POS tagger has been designed with the help of Indian Government (TDIL) tagset (Indian Govt. Tagset, [1]). With this POS-tagged file, MWE identifier was developed. However, for developing MWE identifier, some rules are created for MWE tagset and then MWE-tagged file has been developed which in turn produces the automatic extraction of the MWEs from tagged corpora using CRF({+}{+}) tool. Moreover, evaluation of learning resources has been performed to calculate the accuracy, and as a result, the output of corresponding proposed resources such as stemmer, lemmatizer, POS tagger, and MWE identifier are 77.0, 86.8, 73.20, and 43.50% for Hindi and 74.0, 85.4, 84.97 and 47.2% for Urdu, respectively." @default.
- W2914446996 created "2019-02-21" @default.
- W2914446996 creator A5033012738 @default.
- W2914446996 creator A5034240886 @default.
- W2914446996 creator A5037247181 @default.
- W2914446996 date "2019-01-01" @default.
- W2914446996 modified "2023-09-26" @default.
- W2914446996 title "Advanced Machine Learning Techniques in Natural Language Processing for Indian Languages" @default.
- W2914446996 cites W2057560641 @default.
- W2914446996 cites W2110448499 @default.
- W2914446996 cites W2144839729 @default.
- W2914446996 cites W2150718014 @default.
- W2914446996 cites W2317438879 @default.
- W2914446996 cites W2508119041 @default.
- W2914446996 cites W2963495519 @default.
- W2914446996 doi "https://doi.org/10.1007/978-3-030-03131-2_7" @default.
- W2914446996 hasPublicationYear "2019" @default.
- W2914446996 type Work @default.
- W2914446996 sameAs 2914446996 @default.
- W2914446996 citedByCount "3" @default.
- W2914446996 countsByYear W29144469962021 @default.
- W2914446996 countsByYear W29144469962022 @default.
- W2914446996 countsByYear W29144469962023 @default.
- W2914446996 crossrefType "book-chapter" @default.
- W2914446996 hasAuthorship W2914446996A5033012738 @default.
- W2914446996 hasAuthorship W2914446996A5034240886 @default.
- W2914446996 hasAuthorship W2914446996A5037247181 @default.
- W2914446996 hasConcept C138885662 @default.
- W2914446996 hasConcept C154504017 @default.
- W2914446996 hasConcept C154945302 @default.
- W2914446996 hasConcept C171078966 @default.
- W2914446996 hasConcept C199360897 @default.
- W2914446996 hasConcept C203005215 @default.
- W2914446996 hasConcept C204321447 @default.
- W2914446996 hasConcept C2777350258 @default.
- W2914446996 hasConcept C41008148 @default.
- W2914446996 hasConcept C41895202 @default.
- W2914446996 hasConcept C519982507 @default.
- W2914446996 hasConcept C90805587 @default.
- W2914446996 hasConceptScore W2914446996C138885662 @default.
- W2914446996 hasConceptScore W2914446996C154504017 @default.
- W2914446996 hasConceptScore W2914446996C154945302 @default.
- W2914446996 hasConceptScore W2914446996C171078966 @default.
- W2914446996 hasConceptScore W2914446996C199360897 @default.
- W2914446996 hasConceptScore W2914446996C203005215 @default.
- W2914446996 hasConceptScore W2914446996C204321447 @default.
- W2914446996 hasConceptScore W2914446996C2777350258 @default.
- W2914446996 hasConceptScore W2914446996C41008148 @default.
- W2914446996 hasConceptScore W2914446996C41895202 @default.
- W2914446996 hasConceptScore W2914446996C519982507 @default.
- W2914446996 hasConceptScore W2914446996C90805587 @default.
- W2914446996 hasLocation W29144469961 @default.
- W2914446996 hasOpenAccess W2914446996 @default.
- W2914446996 hasPrimaryLocation W29144469961 @default.
- W2914446996 hasRelatedWork W1593502373 @default.
- W2914446996 hasRelatedWork W170711724 @default.
- W2914446996 hasRelatedWork W2139604620 @default.
- W2914446996 hasRelatedWork W2316776689 @default.
- W2914446996 hasRelatedWork W2733017463 @default.
- W2914446996 hasRelatedWork W2792091310 @default.
- W2914446996 hasRelatedWork W2945753004 @default.
- W2914446996 hasRelatedWork W3022937510 @default.
- W2914446996 hasRelatedWork W3169305685 @default.
- W2914446996 hasRelatedWork W4297712837 @default.
- W2914446996 isParatext "false" @default.
- W2914446996 isRetracted "false" @default.
- W2914446996 magId "2914446996" @default.
- W2914446996 workType "book-chapter" @default.