Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914483570> ?p ?o ?g. }
- W2914483570 abstract "A bstract Selection of individual protein particles in cryo-electron micrographs is an important step in single particle analysis. In this study, we developed a deep learning-based method to automatically detect particle centers from cryoEM micrographs. This is a challenging task because of the low signal-to-noise ratio of cryoEM micrographs and the size, shape, and grayscale-level variations in particles. We propose a double convolutional neural network (CNN) cascade for automated detection of particles in cryo-electron micrographs. Particles are detected by the first network, a fully convolutional regression network (FCRN), which maps the particle image to a continuous distance map that acts like a probability density function of particle centers. Particles identified by FCRN are further refined (or classified) to reduce false particle detections by the second CNN. This approach, entitled Deep Regression Picker Network or “DRPnet”, is simple but very effective in recognizing different grayscale patterns corresponding to 2D views of 3D particles. Our experiments showed that DRPnet’s first CNN pretrained with one dataset can be used to detect particles from a different datasets without retraining. The performance of this network can be further improved by re-training the network using specific particle datasets. The second network, a classification convolutional neural network, is used to refine detection results by identifying false detections. The proposed fully automated “deep regression” system, DRPnet, pretrained with TRPV1 (EMPIAR-10005) [1], and tested on β -galactosidase (EMPIAR-10017) [2] and β -galactosidase (EMPIAR-10061) [3], was then compared to RELION’s interactive particle picking. Preliminary experiments resulted in comparable or better particle picking performance with drastically reduced user interactions and improved processing time." @default.
- W2914483570 created "2019-02-21" @default.
- W2914483570 creator A5016563724 @default.
- W2914483570 creator A5016739320 @default.
- W2914483570 creator A5024182063 @default.
- W2914483570 creator A5024965471 @default.
- W2914483570 creator A5065836511 @default.
- W2914483570 date "2019-04-23" @default.
- W2914483570 modified "2023-09-24" @default.
- W2914483570 title "DRPnet - Automated Particle Picking in Cryo-Electron Micrographs using Deep Regression" @default.
- W2914483570 cites W1503688477 @default.
- W2914483570 cites W1536680647 @default.
- W2914483570 cites W1810581179 @default.
- W2914483570 cites W1978288593 @default.
- W2914483570 cites W1982295411 @default.
- W2914483570 cites W1987382845 @default.
- W2914483570 cites W1995785876 @default.
- W2914483570 cites W1997581342 @default.
- W2914483570 cites W2017508876 @default.
- W2914483570 cites W2021825077 @default.
- W2914483570 cites W2031489346 @default.
- W2914483570 cites W2075824676 @default.
- W2914483570 cites W2091096627 @default.
- W2914483570 cites W2102663456 @default.
- W2914483570 cites W2132629607 @default.
- W2914483570 cites W2143205611 @default.
- W2914483570 cites W2152562710 @default.
- W2914483570 cites W2164659462 @default.
- W2914483570 cites W2275464413 @default.
- W2914483570 cites W2278419621 @default.
- W2914483570 cites W2299689158 @default.
- W2914483570 cites W2418037503 @default.
- W2914483570 cites W2505772294 @default.
- W2914483570 cites W2520930511 @default.
- W2914483570 cites W2570343428 @default.
- W2914483570 cites W2580792459 @default.
- W2914483570 cites W2587625522 @default.
- W2914483570 cites W2621915656 @default.
- W2914483570 cites W2755784633 @default.
- W2914483570 cites W2808303925 @default.
- W2914483570 cites W2893734459 @default.
- W2914483570 cites W2899714098 @default.
- W2914483570 cites W2917749467 @default.
- W2914483570 cites W2963364133 @default.
- W2914483570 cites W2963568497 @default.
- W2914483570 cites W3101982572 @default.
- W2914483570 cites W3105582633 @default.
- W2914483570 cites W3106250896 @default.
- W2914483570 cites W4239060598 @default.
- W2914483570 cites W2526579041 @default.
- W2914483570 doi "https://doi.org/10.1101/616169" @default.
- W2914483570 hasPublicationYear "2019" @default.
- W2914483570 type Work @default.
- W2914483570 sameAs 2914483570 @default.
- W2914483570 citedByCount "1" @default.
- W2914483570 countsByYear W29144835702019 @default.
- W2914483570 crossrefType "posted-content" @default.
- W2914483570 hasAuthorship W2914483570A5016563724 @default.
- W2914483570 hasAuthorship W2914483570A5016739320 @default.
- W2914483570 hasAuthorship W2914483570A5024182063 @default.
- W2914483570 hasAuthorship W2914483570A5024965471 @default.
- W2914483570 hasAuthorship W2914483570A5065836511 @default.
- W2914483570 hasBestOaLocation W29144835701 @default.
- W2914483570 hasConcept C108583219 @default.
- W2914483570 hasConcept C111368507 @default.
- W2914483570 hasConcept C115961682 @default.
- W2914483570 hasConcept C120665830 @default.
- W2914483570 hasConcept C121332964 @default.
- W2914483570 hasConcept C127313418 @default.
- W2914483570 hasConcept C153180895 @default.
- W2914483570 hasConcept C154945302 @default.
- W2914483570 hasConcept C186060115 @default.
- W2914483570 hasConcept C2778517922 @default.
- W2914483570 hasConcept C3018767501 @default.
- W2914483570 hasConcept C31972630 @default.
- W2914483570 hasConcept C41008148 @default.
- W2914483570 hasConcept C50644808 @default.
- W2914483570 hasConcept C78201319 @default.
- W2914483570 hasConcept C81363708 @default.
- W2914483570 hasConcept C86803240 @default.
- W2914483570 hasConcept C93877712 @default.
- W2914483570 hasConceptScore W2914483570C108583219 @default.
- W2914483570 hasConceptScore W2914483570C111368507 @default.
- W2914483570 hasConceptScore W2914483570C115961682 @default.
- W2914483570 hasConceptScore W2914483570C120665830 @default.
- W2914483570 hasConceptScore W2914483570C121332964 @default.
- W2914483570 hasConceptScore W2914483570C127313418 @default.
- W2914483570 hasConceptScore W2914483570C153180895 @default.
- W2914483570 hasConceptScore W2914483570C154945302 @default.
- W2914483570 hasConceptScore W2914483570C186060115 @default.
- W2914483570 hasConceptScore W2914483570C2778517922 @default.
- W2914483570 hasConceptScore W2914483570C3018767501 @default.
- W2914483570 hasConceptScore W2914483570C31972630 @default.
- W2914483570 hasConceptScore W2914483570C41008148 @default.
- W2914483570 hasConceptScore W2914483570C50644808 @default.
- W2914483570 hasConceptScore W2914483570C78201319 @default.
- W2914483570 hasConceptScore W2914483570C81363708 @default.
- W2914483570 hasConceptScore W2914483570C86803240 @default.
- W2914483570 hasConceptScore W2914483570C93877712 @default.
- W2914483570 hasLocation W29144835701 @default.