Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914534571> ?p ?o ?g. }
- W2914534571 endingPage "18049" @default.
- W2914534571 startingPage "18042" @default.
- W2914534571 abstract "The quality assurance of fabrics is a fundamental issue in the textile manufacturing industry. Automatic and accurate detection of defects is one of the most important and challenging tasks in order to guarantee the quality of fabrics. In this paper, we propose an approach for the defect detection on textiles with patterned texture using a rule-based classification system and the local binary features. In our proposal, rules are automatically learned from the textile samples using a rough-set-based approach. The proposed system analyzes the texture of fabrics using a combination of local binary features, which have shown to be highly discriminatory. Our approach is performed in two stages: training and testing. During the training stage, binary features from both defective and defect-free images are extracted and used to formulate an ensemble of the rough-set-based rules. For the testing stage, we submit different samples of fabrics, and they are classified as defective or defect-free. The proposed method is quantitatively evaluated on an extensive dataset of images of the defective fabrics. These experiments show that the proposed approach results in higher accuracy, in comparison with those obtained by the state-of-the-art methods." @default.
- W2914534571 created "2019-02-21" @default.
- W2914534571 creator A5021242308 @default.
- W2914534571 creator A5037621550 @default.
- W2914534571 creator A5057863052 @default.
- W2914534571 creator A5074542850 @default.
- W2914534571 date "2019-01-01" @default.
- W2914534571 modified "2023-10-14" @default.
- W2914534571 title "On the Use of Binary Features in a Rule-Based Approach for Defect Detection on Patterned Textiles" @default.
- W2914534571 cites W1980004124 @default.
- W2914534571 cites W1981947099 @default.
- W2914534571 cites W1991141435 @default.
- W2914534571 cites W1994787282 @default.
- W2914534571 cites W1999922342 @default.
- W2914534571 cites W2004313226 @default.
- W2914534571 cites W2014906509 @default.
- W2914534571 cites W2019483202 @default.
- W2914534571 cites W2019654077 @default.
- W2914534571 cites W2028555403 @default.
- W2914534571 cites W2031577896 @default.
- W2914534571 cites W2034851609 @default.
- W2914534571 cites W2034856412 @default.
- W2914534571 cites W2038019723 @default.
- W2914534571 cites W2054602489 @default.
- W2914534571 cites W2055375882 @default.
- W2914534571 cites W2069481589 @default.
- W2914534571 cites W2073172073 @default.
- W2914534571 cites W2074224669 @default.
- W2914534571 cites W2082723523 @default.
- W2914534571 cites W2086365768 @default.
- W2914534571 cites W2091173639 @default.
- W2914534571 cites W2097946161 @default.
- W2914534571 cites W2102669124 @default.
- W2914534571 cites W2109834311 @default.
- W2914534571 cites W2109925328 @default.
- W2914534571 cites W2116090201 @default.
- W2914534571 cites W2125629257 @default.
- W2914534571 cites W2127751858 @default.
- W2914534571 cites W2129200193 @default.
- W2914534571 cites W2133990480 @default.
- W2914534571 cites W2158010171 @default.
- W2914534571 cites W2163352848 @default.
- W2914534571 cites W2171539429 @default.
- W2914534571 cites W2336570577 @default.
- W2914534571 cites W2487087946 @default.
- W2914534571 cites W2491196925 @default.
- W2914534571 cites W2530054501 @default.
- W2914534571 cites W2533921408 @default.
- W2914534571 cites W2615908833 @default.
- W2914534571 cites W2790567169 @default.
- W2914534571 cites W2790770303 @default.
- W2914534571 cites W4230542890 @default.
- W2914534571 cites W4232348732 @default.
- W2914534571 cites W4255391993 @default.
- W2914534571 cites W4255833381 @default.
- W2914534571 doi "https://doi.org/10.1109/access.2019.2896078" @default.
- W2914534571 hasPublicationYear "2019" @default.
- W2914534571 type Work @default.
- W2914534571 sameAs 2914534571 @default.
- W2914534571 citedByCount "14" @default.
- W2914534571 countsByYear W29145345712019 @default.
- W2914534571 countsByYear W29145345712020 @default.
- W2914534571 countsByYear W29145345712021 @default.
- W2914534571 countsByYear W29145345712022 @default.
- W2914534571 countsByYear W29145345712023 @default.
- W2914534571 crossrefType "journal-article" @default.
- W2914534571 hasAuthorship W2914534571A5021242308 @default.
- W2914534571 hasAuthorship W2914534571A5037621550 @default.
- W2914534571 hasAuthorship W2914534571A5057863052 @default.
- W2914534571 hasAuthorship W2914534571A5074542850 @default.
- W2914534571 hasBestOaLocation W29145345711 @default.
- W2914534571 hasConcept C111012933 @default.
- W2914534571 hasConcept C111472728 @default.
- W2914534571 hasConcept C115961682 @default.
- W2914534571 hasConcept C12267149 @default.
- W2914534571 hasConcept C124101348 @default.
- W2914534571 hasConcept C138885662 @default.
- W2914534571 hasConcept C153180895 @default.
- W2914534571 hasConcept C154945302 @default.
- W2914534571 hasConcept C159985019 @default.
- W2914534571 hasConcept C164767435 @default.
- W2914534571 hasConcept C177264268 @default.
- W2914534571 hasConcept C192562407 @default.
- W2914534571 hasConcept C199360897 @default.
- W2914534571 hasConcept C2779530757 @default.
- W2914534571 hasConcept C2781195486 @default.
- W2914534571 hasConcept C33923547 @default.
- W2914534571 hasConcept C41008148 @default.
- W2914534571 hasConcept C48372109 @default.
- W2914534571 hasConcept C53533937 @default.
- W2914534571 hasConcept C66905080 @default.
- W2914534571 hasConcept C87335442 @default.
- W2914534571 hasConcept C94375191 @default.
- W2914534571 hasConceptScore W2914534571C111012933 @default.
- W2914534571 hasConceptScore W2914534571C111472728 @default.
- W2914534571 hasConceptScore W2914534571C115961682 @default.
- W2914534571 hasConceptScore W2914534571C12267149 @default.
- W2914534571 hasConceptScore W2914534571C124101348 @default.