Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914574304> ?p ?o ?g. }
- W2914574304 endingPage "170" @default.
- W2914574304 startingPage "162" @default.
- W2914574304 abstract "This paper provides a tutorial companion for the methodological approach implemented in Huh et al. (2015) that overcame two major challenges for individual participant data (IPD) meta-analysis. Specifically, we show how to validly combine data from heterogeneous studies with varying numbers of treatment arms, and how to analyze highly-skewed count outcomes with many zeroes (e.g., alcohol and substance use outcomes) to estimate overall effect sizes. These issues have important implications for the feasibility, applicability, and interpretation of IPD meta-analysis but have received little attention thus far in the applied research literature. We present a Bayesian multilevel modeling approach for combining multi-arm trials (i.e., those with two or more treatment groups) in a distribution-appropriate IPD analysis. Illustrative data come from Project INTEGRATE, an IPD meta-analysis study of brief motivational interventions to reduce excessive alcohol use and related harm among college students. Our approach preserves the original random allocation within studies, combines within-study estimates across all studies, overcomes between-study heterogeneity in trial design (i.e., number of treatment arms) and/or study-level missing data, and derives two related treatment outcomes in a multivariate IPD meta-analysis. This methodological approach is a favorable alternative to collapsing or excluding intervention groups within multi-arm trials, making it possible to directly compare multiple treatment arms in a one-step IPD meta-analysis. To facilitate application of the method, we provide annotated computer code in R along with the example data used in this tutorial." @default.
- W2914574304 created "2019-02-21" @default.
- W2914574304 creator A5021605006 @default.
- W2914574304 creator A5055296209 @default.
- W2914574304 creator A5080957734 @default.
- W2914574304 creator A5090783620 @default.
- W2914574304 creator A5091572278 @default.
- W2914574304 date "2019-07-01" @default.
- W2914574304 modified "2023-10-17" @default.
- W2914574304 title "A tutorial on individual participant data meta-analysis using Bayesian multilevel modeling to estimate alcohol intervention effects across heterogeneous studies" @default.
- W2914574304 cites W1536497620 @default.
- W2914574304 cites W2002313801 @default.
- W2914574304 cites W2015998951 @default.
- W2914574304 cites W2016741595 @default.
- W2914574304 cites W2016799983 @default.
- W2914574304 cites W2031252194 @default.
- W2914574304 cites W2050118439 @default.
- W2914574304 cites W2056654293 @default.
- W2914574304 cites W2063276446 @default.
- W2914574304 cites W2090392548 @default.
- W2914574304 cites W2097624629 @default.
- W2914574304 cites W2102360969 @default.
- W2914574304 cites W2120959053 @default.
- W2914574304 cites W2123409955 @default.
- W2914574304 cites W2128625962 @default.
- W2914574304 cites W2143518731 @default.
- W2914574304 cites W2143568462 @default.
- W2914574304 cites W2146962227 @default.
- W2914574304 cites W2151689585 @default.
- W2914574304 cites W2324000997 @default.
- W2914574304 cites W2329824185 @default.
- W2914574304 cites W2413419749 @default.
- W2914574304 cites W2749069611 @default.
- W2914574304 cites W4235183258 @default.
- W2914574304 cites W4256273897 @default.
- W2914574304 doi "https://doi.org/10.1016/j.addbeh.2019.01.032" @default.
- W2914574304 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6989027" @default.
- W2914574304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30791977" @default.
- W2914574304 hasPublicationYear "2019" @default.
- W2914574304 type Work @default.
- W2914574304 sameAs 2914574304 @default.
- W2914574304 citedByCount "14" @default.
- W2914574304 countsByYear W29145743042020 @default.
- W2914574304 countsByYear W29145743042021 @default.
- W2914574304 countsByYear W29145743042022 @default.
- W2914574304 countsByYear W29145743042023 @default.
- W2914574304 crossrefType "journal-article" @default.
- W2914574304 hasAuthorship W2914574304A5021605006 @default.
- W2914574304 hasAuthorship W2914574304A5055296209 @default.
- W2914574304 hasAuthorship W2914574304A5080957734 @default.
- W2914574304 hasAuthorship W2914574304A5090783620 @default.
- W2914574304 hasAuthorship W2914574304A5091572278 @default.
- W2914574304 hasBestOaLocation W29145743041 @default.
- W2914574304 hasConcept C107673813 @default.
- W2914574304 hasConcept C118552586 @default.
- W2914574304 hasConcept C119857082 @default.
- W2914574304 hasConcept C126322002 @default.
- W2914574304 hasConcept C154945302 @default.
- W2914574304 hasConcept C15744967 @default.
- W2914574304 hasConcept C161584116 @default.
- W2914574304 hasConcept C168743327 @default.
- W2914574304 hasConcept C27415008 @default.
- W2914574304 hasConcept C2780665704 @default.
- W2914574304 hasConcept C41008148 @default.
- W2914574304 hasConcept C53059260 @default.
- W2914574304 hasConcept C71924100 @default.
- W2914574304 hasConcept C9357733 @default.
- W2914574304 hasConcept C95190672 @default.
- W2914574304 hasConceptScore W2914574304C107673813 @default.
- W2914574304 hasConceptScore W2914574304C118552586 @default.
- W2914574304 hasConceptScore W2914574304C119857082 @default.
- W2914574304 hasConceptScore W2914574304C126322002 @default.
- W2914574304 hasConceptScore W2914574304C154945302 @default.
- W2914574304 hasConceptScore W2914574304C15744967 @default.
- W2914574304 hasConceptScore W2914574304C161584116 @default.
- W2914574304 hasConceptScore W2914574304C168743327 @default.
- W2914574304 hasConceptScore W2914574304C27415008 @default.
- W2914574304 hasConceptScore W2914574304C2780665704 @default.
- W2914574304 hasConceptScore W2914574304C41008148 @default.
- W2914574304 hasConceptScore W2914574304C53059260 @default.
- W2914574304 hasConceptScore W2914574304C71924100 @default.
- W2914574304 hasConceptScore W2914574304C9357733 @default.
- W2914574304 hasConceptScore W2914574304C95190672 @default.
- W2914574304 hasFunder F4320337330 @default.
- W2914574304 hasLocation W29145743041 @default.
- W2914574304 hasLocation W29145743042 @default.
- W2914574304 hasLocation W29145743043 @default.
- W2914574304 hasOpenAccess W2914574304 @default.
- W2914574304 hasPrimaryLocation W29145743041 @default.
- W2914574304 hasRelatedWork W1577714061 @default.
- W2914574304 hasRelatedWork W2060932167 @default.
- W2914574304 hasRelatedWork W2085396959 @default.
- W2914574304 hasRelatedWork W2231416078 @default.
- W2914574304 hasRelatedWork W2799947423 @default.
- W2914574304 hasRelatedWork W2943927653 @default.
- W2914574304 hasRelatedWork W3033344178 @default.
- W2914574304 hasRelatedWork W3185144104 @default.
- W2914574304 hasRelatedWork W4307680388 @default.