Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914612012> ?p ?o ?g. }
- W2914612012 endingPage "20" @default.
- W2914612012 startingPage "1" @default.
- W2914612012 abstract "Many optimization problems have become increasingly complex, which promotes researches on the improvement of different optimization algorithms. The monarch butterfly optimization (MBO) algorithm has proven to be an effective tool to solve various kinds of optimization problems. However, in the basic MBO algorithm, the search strategy easily falls into local optima, causing premature convergence and poor performance on many complex optimization problems. To solve the issues, this paper develops a novel MBO algorithm based on opposition-based learning (OBL) and random local perturbation (RLP). Firstly, the OBL method is introduced to generate the opposition-based population coming from the original population. By comparing the opposition-based population with the original population, the better individuals are selected and pass to the next generation, and then this process can efficiently prevent the MBO from falling into a local optimum. Secondly, a new RLP is defined and introduced to improve the migration operator. This operation shares the information of excellent individuals and is helpful for guiding some poor individuals toward the optimal solution. A greedy strategy is employed to replace the elitist strategy to eliminate setting the elitist parameter in the basic MBO, and it can reduce a sorting operation and enhance the computational efficiency. Finally, an OBL and RLP-based improved MBO (OPMBO) algorithm with its complexity analysis is developed, following on which many experiments on a series of different dimensional benchmark functions are performed and the OPMBO is applied to clustering optimization on several public data sets. Experimental results demonstrate that the proposed algorithm can achieve the great optimization performance compared with a few state-of-the-art algorithms in most of the test cases." @default.
- W2914612012 created "2019-02-21" @default.
- W2914612012 creator A5002734812 @default.
- W2914612012 creator A5004055512 @default.
- W2914612012 creator A5014961410 @default.
- W2914612012 creator A5036052915 @default.
- W2914612012 date "2019-02-10" @default.
- W2914612012 modified "2023-10-16" @default.
- W2914612012 title "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation" @default.
- W2914612012 cites W1481655810 @default.
- W2914612012 cites W1595159159 @default.
- W2914612012 cites W1834439319 @default.
- W2914612012 cites W1894798256 @default.
- W2914612012 cites W1983138931 @default.
- W2914612012 cites W1985460844 @default.
- W2914612012 cites W2037066620 @default.
- W2914612012 cites W2055307975 @default.
- W2914612012 cites W2057287521 @default.
- W2914612012 cites W2061438946 @default.
- W2914612012 cites W2067675584 @default.
- W2914612012 cites W2071150716 @default.
- W2914612012 cites W2078669430 @default.
- W2914612012 cites W2093195672 @default.
- W2914612012 cites W2106905228 @default.
- W2914612012 cites W2107128843 @default.
- W2914612012 cites W2165683014 @default.
- W2914612012 cites W2233397205 @default.
- W2914612012 cites W2244980709 @default.
- W2914612012 cites W2269913476 @default.
- W2914612012 cites W2339292426 @default.
- W2914612012 cites W2363566301 @default.
- W2914612012 cites W2409637898 @default.
- W2914612012 cites W2514515163 @default.
- W2914612012 cites W2535884382 @default.
- W2914612012 cites W2558975684 @default.
- W2914612012 cites W2567948164 @default.
- W2914612012 cites W2590432748 @default.
- W2914612012 cites W2592274954 @default.
- W2914612012 cites W2606601052 @default.
- W2914612012 cites W2617985305 @default.
- W2914612012 cites W2735447725 @default.
- W2914612012 cites W2754545959 @default.
- W2914612012 cites W2761507194 @default.
- W2914612012 cites W2765933348 @default.
- W2914612012 cites W2768536853 @default.
- W2914612012 cites W2769961547 @default.
- W2914612012 cites W2782762569 @default.
- W2914612012 cites W2783089347 @default.
- W2914612012 cites W2783482136 @default.
- W2914612012 cites W2789717563 @default.
- W2914612012 cites W2790176069 @default.
- W2914612012 cites W2790368141 @default.
- W2914612012 cites W2790925524 @default.
- W2914612012 cites W2791110264 @default.
- W2914612012 cites W2793452679 @default.
- W2914612012 cites W2794136136 @default.
- W2914612012 cites W2797756395 @default.
- W2914612012 cites W2800467185 @default.
- W2914612012 cites W2802417638 @default.
- W2914612012 cites W2802465900 @default.
- W2914612012 cites W2802586787 @default.
- W2914612012 cites W2804400376 @default.
- W2914612012 cites W2805666699 @default.
- W2914612012 cites W2883357312 @default.
- W2914612012 cites W2899142335 @default.
- W2914612012 cites W2900069527 @default.
- W2914612012 cites W341879454 @default.
- W2914612012 doi "https://doi.org/10.1155/2019/4182148" @default.
- W2914612012 hasPublicationYear "2019" @default.
- W2914612012 type Work @default.
- W2914612012 sameAs 2914612012 @default.
- W2914612012 citedByCount "52" @default.
- W2914612012 countsByYear W29146120122019 @default.
- W2914612012 countsByYear W29146120122020 @default.
- W2914612012 countsByYear W29146120122021 @default.
- W2914612012 countsByYear W29146120122022 @default.
- W2914612012 countsByYear W29146120122023 @default.
- W2914612012 crossrefType "journal-article" @default.
- W2914612012 hasAuthorship W2914612012A5002734812 @default.
- W2914612012 hasAuthorship W2914612012A5004055512 @default.
- W2914612012 hasAuthorship W2914612012A5014961410 @default.
- W2914612012 hasAuthorship W2914612012A5036052915 @default.
- W2914612012 hasBestOaLocation W29146120121 @default.
- W2914612012 hasConcept C11413529 @default.
- W2914612012 hasConcept C121332964 @default.
- W2914612012 hasConcept C126255220 @default.
- W2914612012 hasConcept C13280743 @default.
- W2914612012 hasConcept C137836250 @default.
- W2914612012 hasConcept C141934464 @default.
- W2914612012 hasConcept C144024400 @default.
- W2914612012 hasConcept C149923435 @default.
- W2914612012 hasConcept C154945302 @default.
- W2914612012 hasConcept C177918212 @default.
- W2914612012 hasConcept C185798385 @default.
- W2914612012 hasConcept C205649164 @default.
- W2914612012 hasConcept C2908647359 @default.
- W2914612012 hasConcept C33923547 @default.
- W2914612012 hasConcept C41008148 @default.