Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914657951> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2914657951 endingPage "342" @default.
- W2914657951 startingPage "335" @default.
- W2914657951 abstract "Recent years’ segmentation challenges on Ischemic Stroke Lesion Segmentation (ISLES) attracted great interest in the medical image computing domain, reflected in >80 citations of the 2017 summary article of the initial ISLES 2015 challenge [1]. While 2015–2017 ISLES challenges focussed on MRI images, the 2018 challenge takes into account clinical relevance of (perfusion) CT to triage stroke patients. Thus, from a methodological point of view, it is now to be analyzed whether and to what extent the 2015–2017 methods can be adapted to automated core lesion segmentation using acute stroke CT perfusion imaging. We strive to deliver a baseline for ISLES 2018 by using two well established machine learning-based segmentation approaches already applied for the initial ISLES 2015 challenge: random forest (RF) with classical hand-crafted image features (i.e. the most frequently used type of algorithm in ISLES 2015) and encoder-decoder-style convolutional neuronal networks (CNNs). In detail, for CNN-based segmentation, we employ the DeepLabv3+ architecture. The performance of the individual as well as a combination of the segmentation approaches is evaluated based on the ISLES 2018 training data set, and respective results are presented. Aiming at an ISLES 2018-specific performance baseline, we do neither make use of additional data other than the provided challenge data nor perform extensive data augmentation. The results highlight the potential to improve stroke lesion segmentation accuracy by combining RF and CNN information." @default.
- W2914657951 created "2019-02-21" @default.
- W2914657951 creator A5010196512 @default.
- W2914657951 creator A5027587968 @default.
- W2914657951 creator A5043688773 @default.
- W2914657951 creator A5075582704 @default.
- W2914657951 date "2019-01-01" @default.
- W2914657951 modified "2023-09-26" @default.
- W2914657951 title "Combining Good Old Random Forest and DeepLabv3+ for ISLES 2018 CT-Based Stroke Segmentation" @default.
- W2914657951 cites W1901129140 @default.
- W2914657951 cites W2157213001 @default.
- W2914657951 cites W2194775991 @default.
- W2914657951 cites W2471631844 @default.
- W2914657951 cites W2484736472 @default.
- W2914657951 cites W2890354008 @default.
- W2914657951 cites W2964309882 @default.
- W2914657951 cites W4239230441 @default.
- W2914657951 cites W2312104448 @default.
- W2914657951 doi "https://doi.org/10.1007/978-3-030-11723-8_34" @default.
- W2914657951 hasPublicationYear "2019" @default.
- W2914657951 type Work @default.
- W2914657951 sameAs 2914657951 @default.
- W2914657951 citedByCount "4" @default.
- W2914657951 countsByYear W29146579512020 @default.
- W2914657951 countsByYear W29146579512022 @default.
- W2914657951 countsByYear W29146579512023 @default.
- W2914657951 crossrefType "book-chapter" @default.
- W2914657951 hasAuthorship W2914657951A5010196512 @default.
- W2914657951 hasAuthorship W2914657951A5027587968 @default.
- W2914657951 hasAuthorship W2914657951A5043688773 @default.
- W2914657951 hasAuthorship W2914657951A5075582704 @default.
- W2914657951 hasConcept C108583219 @default.
- W2914657951 hasConcept C119857082 @default.
- W2914657951 hasConcept C124504099 @default.
- W2914657951 hasConcept C153180895 @default.
- W2914657951 hasConcept C154945302 @default.
- W2914657951 hasConcept C169258074 @default.
- W2914657951 hasConcept C41008148 @default.
- W2914657951 hasConcept C81363708 @default.
- W2914657951 hasConcept C89600930 @default.
- W2914657951 hasConceptScore W2914657951C108583219 @default.
- W2914657951 hasConceptScore W2914657951C119857082 @default.
- W2914657951 hasConceptScore W2914657951C124504099 @default.
- W2914657951 hasConceptScore W2914657951C153180895 @default.
- W2914657951 hasConceptScore W2914657951C154945302 @default.
- W2914657951 hasConceptScore W2914657951C169258074 @default.
- W2914657951 hasConceptScore W2914657951C41008148 @default.
- W2914657951 hasConceptScore W2914657951C81363708 @default.
- W2914657951 hasConceptScore W2914657951C89600930 @default.
- W2914657951 hasLocation W29146579511 @default.
- W2914657951 hasOpenAccess W2914657951 @default.
- W2914657951 hasPrimaryLocation W29146579511 @default.
- W2914657951 hasRelatedWork W2790662084 @default.
- W2914657951 hasRelatedWork W2948658236 @default.
- W2914657951 hasRelatedWork W2964383635 @default.
- W2914657951 hasRelatedWork W3102253946 @default.
- W2914657951 hasRelatedWork W3144574764 @default.
- W2914657951 hasRelatedWork W3156786002 @default.
- W2914657951 hasRelatedWork W4281616679 @default.
- W2914657951 hasRelatedWork W4293211451 @default.
- W2914657951 hasRelatedWork W4308191152 @default.
- W2914657951 hasRelatedWork W4322727400 @default.
- W2914657951 isParatext "false" @default.
- W2914657951 isRetracted "false" @default.
- W2914657951 magId "2914657951" @default.
- W2914657951 workType "book-chapter" @default.