Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914749581> ?p ?o ?g. }
- W2914749581 endingPage "1531" @default.
- W2914749581 startingPage "1521" @default.
- W2914749581 abstract "In this work, we present a new technique for the decomposition of multivariate data, which we call Multivariate Fast Iterative Filtering (MvFIF) algorithm. We study its properties, proving rigorously that it converges in finite time when applied to the decomposition of any kind of multivariate signal. We test MvFIF performance using a wide variety of artificial and real multivariate signals, showing its ability to: separate multivariate modulated oscillations; align frequencies along different channels; produce a quasi–dyadic filterbank when decomposing white Gaussian noise; decompose the signal in a quasi–orthogonal set of components; being robust to noise perturbation, even when the number of channels is increased considerably. Finally, we compare it and its performance with the main methods developed so far in the literature, proving that MvFIF produces, without any a priori assumption on the signal under investigation and in a fast and reliable manner, a uniquely defined decomposition of any multivariate signal." @default.
- W2914749581 created "2019-02-21" @default.
- W2914749581 creator A5052683964 @default.
- W2914749581 creator A5080788724 @default.
- W2914749581 date "2022-01-01" @default.
- W2914749581 modified "2023-10-17" @default.
- W2914749581 title "Multivariate Fast Iterative Filtering for the Decomposition of Nonstationary Signals" @default.
- W2914749581 cites W138934459 @default.
- W2914749581 cites W1971509683 @default.
- W2914749581 cites W1973048907 @default.
- W2914749581 cites W1989940636 @default.
- W2914749581 cites W2000982976 @default.
- W2914749581 cites W2007221293 @default.
- W2914749581 cites W2007357277 @default.
- W2914749581 cites W2019900743 @default.
- W2914749581 cites W2028497691 @default.
- W2914749581 cites W2052745931 @default.
- W2914749581 cites W2063530343 @default.
- W2914749581 cites W2077664060 @default.
- W2914749581 cites W2078258947 @default.
- W2914749581 cites W2091752829 @default.
- W2914749581 cites W2096592665 @default.
- W2914749581 cites W2098395403 @default.
- W2914749581 cites W2105880556 @default.
- W2914749581 cites W2110983594 @default.
- W2914749581 cites W2113638573 @default.
- W2914749581 cites W2120390927 @default.
- W2914749581 cites W2125056386 @default.
- W2914749581 cites W2132042151 @default.
- W2914749581 cites W2153462129 @default.
- W2914749581 cites W2156893865 @default.
- W2914749581 cites W2160724632 @default.
- W2914749581 cites W2164001739 @default.
- W2914749581 cites W2171167603 @default.
- W2914749581 cites W2403752469 @default.
- W2914749581 cites W2593999683 @default.
- W2914749581 cites W2808807843 @default.
- W2914749581 cites W2888921424 @default.
- W2914749581 cites W2900338824 @default.
- W2914749581 cites W2903379145 @default.
- W2914749581 cites W2958872067 @default.
- W2914749581 cites W2962713415 @default.
- W2914749581 cites W2963396373 @default.
- W2914749581 cites W2977306045 @default.
- W2914749581 cites W3004793191 @default.
- W2914749581 cites W3027946011 @default.
- W2914749581 cites W3038233030 @default.
- W2914749581 cites W3087269484 @default.
- W2914749581 cites W3092244114 @default.
- W2914749581 cites W3102703560 @default.
- W2914749581 cites W4376849658 @default.
- W2914749581 cites W3141408015 @default.
- W2914749581 doi "https://doi.org/10.1109/tsp.2022.3157482" @default.
- W2914749581 hasPublicationYear "2022" @default.
- W2914749581 type Work @default.
- W2914749581 sameAs 2914749581 @default.
- W2914749581 citedByCount "13" @default.
- W2914749581 countsByYear W29147495812020 @default.
- W2914749581 countsByYear W29147495812022 @default.
- W2914749581 countsByYear W29147495812023 @default.
- W2914749581 crossrefType "journal-article" @default.
- W2914749581 hasAuthorship W2914749581A5052683964 @default.
- W2914749581 hasAuthorship W2914749581A5080788724 @default.
- W2914749581 hasBestOaLocation W29147495812 @default.
- W2914749581 hasConcept C100515483 @default.
- W2914749581 hasConcept C104267543 @default.
- W2914749581 hasConcept C105795698 @default.
- W2914749581 hasConcept C106131492 @default.
- W2914749581 hasConcept C112633086 @default.
- W2914749581 hasConcept C11413529 @default.
- W2914749581 hasConcept C121332964 @default.
- W2914749581 hasConcept C161584116 @default.
- W2914749581 hasConcept C163716315 @default.
- W2914749581 hasConcept C169334058 @default.
- W2914749581 hasConcept C199360897 @default.
- W2914749581 hasConcept C2779843651 @default.
- W2914749581 hasConcept C31972630 @default.
- W2914749581 hasConcept C33923547 @default.
- W2914749581 hasConcept C41008148 @default.
- W2914749581 hasConcept C4199805 @default.
- W2914749581 hasConcept C62520636 @default.
- W2914749581 hasConcept C84462506 @default.
- W2914749581 hasConcept C9390403 @default.
- W2914749581 hasConceptScore W2914749581C100515483 @default.
- W2914749581 hasConceptScore W2914749581C104267543 @default.
- W2914749581 hasConceptScore W2914749581C105795698 @default.
- W2914749581 hasConceptScore W2914749581C106131492 @default.
- W2914749581 hasConceptScore W2914749581C112633086 @default.
- W2914749581 hasConceptScore W2914749581C11413529 @default.
- W2914749581 hasConceptScore W2914749581C121332964 @default.
- W2914749581 hasConceptScore W2914749581C161584116 @default.
- W2914749581 hasConceptScore W2914749581C163716315 @default.
- W2914749581 hasConceptScore W2914749581C169334058 @default.
- W2914749581 hasConceptScore W2914749581C199360897 @default.
- W2914749581 hasConceptScore W2914749581C2779843651 @default.
- W2914749581 hasConceptScore W2914749581C31972630 @default.
- W2914749581 hasConceptScore W2914749581C33923547 @default.
- W2914749581 hasConceptScore W2914749581C41008148 @default.