Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914756937> ?p ?o ?g. }
- W2914756937 endingPage "33" @default.
- W2914756937 startingPage "27" @default.
- W2914756937 abstract "Genomic selection has a great potential to increase genetic gain in aquaculture breeding; however, its implementation is hindered by a high genotyping cost due to a large number of individuals to genotype. Within-family genomic selection, which could utilize low-density markers and pedigree information, is suggested as a cost-effective way of implementing genomic selection in aquaculture. In this study, a single trait genomic model (STGM) is compared with a multi-trait genomic model (MTGM) for prediction of within-family genomic breeding values in a simulated sib-evaluated aquaculture breeding scheme. Two traits, one with lower heritability (h12 = 0.05) and another with higher heritability (h22 = 0.5) were simulated. Three genetic correlations (rg = 0.2, rg = 0.5 and rg = 0.8) and zero residual correlation were assumed between these two traits. Given these assumptions, genomic and phenotypic data were simulated for 100 full-sib families of size 100. From each family, 10 individuals were randomly selected as selection candidates and the number of tested sibs varied from 10 to 90 per family. Two scenarios were investigated: in scenario I, all reference sibs were phenotyped for both traits, whereas in scenario II half of the reference sibs measured for trait I and the remaining half were measured for trait II. These scenarios were also compared under four SNP densities (10, 20, 50 and 100 SNP/Chr). For both STGM and MTGM, prediction accuracies increased as the number of tested sibs per family increased from 10 to 90, however, the rate of increase was higher for STGM. Compared to STGM, use of MTGM increased the accuracy by up to 71% in scenario II and by up to 58% in scenario I for the low heritability trait when the genetic correlation between the traits was 0.8. The highest improvement in accuracy was observed in scenario II when only 10 sibs were genotyped per family with 10 SNP/Chr. As the magnitude of the genetic correlation between the traits decreased, the relative gain in accuracy by implementing MTGM was reduced. The relative importance of MTGM also declined with the increase of the number of tested sibs per family and a similar trend, but with lesser magnitude, was observed with the increase of marker density. The results indicate that MTGM performs better than STGM for low heritability traits that are genetically correlated with high heritability traits. The advantage of multi-trait model was greater when both traits are not measured on the same group of individuals." @default.
- W2914756937 created "2019-02-21" @default.
- W2914756937 creator A5067510810 @default.
- W2914756937 creator A5073087469 @default.
- W2914756937 date "2019-04-01" @default.
- W2914756937 modified "2023-09-28" @default.
- W2914756937 title "Accuracy of within-family multi-trait genomic selection models in a sib-based aquaculture breeding scheme" @default.
- W2914756937 cites W1580498257 @default.
- W2914756937 cites W191324832 @default.
- W2914756937 cites W1928998639 @default.
- W2914756937 cites W1977335328 @default.
- W2914756937 cites W1982737915 @default.
- W2914756937 cites W1982957378 @default.
- W2914756937 cites W1983184732 @default.
- W2914756937 cites W1988489968 @default.
- W2914756937 cites W2003201326 @default.
- W2914756937 cites W2018633460 @default.
- W2914756937 cites W2023673366 @default.
- W2914756937 cites W2036577577 @default.
- W2914756937 cites W2051745208 @default.
- W2914756937 cites W2059826994 @default.
- W2914756937 cites W2062845448 @default.
- W2914756937 cites W2065682672 @default.
- W2914756937 cites W2073593854 @default.
- W2914756937 cites W2076168570 @default.
- W2914756937 cites W2085203113 @default.
- W2914756937 cites W2095639479 @default.
- W2914756937 cites W2095808133 @default.
- W2914756937 cites W2099209235 @default.
- W2914756937 cites W2105900972 @default.
- W2914756937 cites W2106418989 @default.
- W2914756937 cites W2136163227 @default.
- W2914756937 cites W2137808057 @default.
- W2914756937 cites W2147295520 @default.
- W2914756937 cites W2157313957 @default.
- W2914756937 cites W2164678873 @default.
- W2914756937 cites W2166975941 @default.
- W2914756937 cites W2502051256 @default.
- W2914756937 cites W2564551776 @default.
- W2914756937 cites W2598252912 @default.
- W2914756937 cites W4293258550 @default.
- W2914756937 cites W2048504048 @default.
- W2914756937 doi "https://doi.org/10.1016/j.aquaculture.2019.02.036" @default.
- W2914756937 hasPublicationYear "2019" @default.
- W2914756937 type Work @default.
- W2914756937 sameAs 2914756937 @default.
- W2914756937 citedByCount "14" @default.
- W2914756937 countsByYear W29147569372019 @default.
- W2914756937 countsByYear W29147569372020 @default.
- W2914756937 countsByYear W29147569372021 @default.
- W2914756937 countsByYear W29147569372022 @default.
- W2914756937 countsByYear W29147569372023 @default.
- W2914756937 crossrefType "journal-article" @default.
- W2914756937 hasAuthorship W2914756937A5067510810 @default.
- W2914756937 hasAuthorship W2914756937A5073087469 @default.
- W2914756937 hasConcept C104317684 @default.
- W2914756937 hasConcept C106934330 @default.
- W2914756937 hasConcept C119857082 @default.
- W2914756937 hasConcept C135763542 @default.
- W2914756937 hasConcept C139275648 @default.
- W2914756937 hasConcept C153209595 @default.
- W2914756937 hasConcept C161890455 @default.
- W2914756937 hasConcept C199360897 @default.
- W2914756937 hasConcept C2778890363 @default.
- W2914756937 hasConcept C2992444039 @default.
- W2914756937 hasConcept C31467283 @default.
- W2914756937 hasConcept C41008148 @default.
- W2914756937 hasConcept C54355233 @default.
- W2914756937 hasConcept C68873052 @default.
- W2914756937 hasConcept C70616004 @default.
- W2914756937 hasConcept C81917197 @default.
- W2914756937 hasConcept C81941488 @default.
- W2914756937 hasConcept C86803240 @default.
- W2914756937 hasConceptScore W2914756937C104317684 @default.
- W2914756937 hasConceptScore W2914756937C106934330 @default.
- W2914756937 hasConceptScore W2914756937C119857082 @default.
- W2914756937 hasConceptScore W2914756937C135763542 @default.
- W2914756937 hasConceptScore W2914756937C139275648 @default.
- W2914756937 hasConceptScore W2914756937C153209595 @default.
- W2914756937 hasConceptScore W2914756937C161890455 @default.
- W2914756937 hasConceptScore W2914756937C199360897 @default.
- W2914756937 hasConceptScore W2914756937C2778890363 @default.
- W2914756937 hasConceptScore W2914756937C2992444039 @default.
- W2914756937 hasConceptScore W2914756937C31467283 @default.
- W2914756937 hasConceptScore W2914756937C41008148 @default.
- W2914756937 hasConceptScore W2914756937C54355233 @default.
- W2914756937 hasConceptScore W2914756937C68873052 @default.
- W2914756937 hasConceptScore W2914756937C70616004 @default.
- W2914756937 hasConceptScore W2914756937C81917197 @default.
- W2914756937 hasConceptScore W2914756937C81941488 @default.
- W2914756937 hasConceptScore W2914756937C86803240 @default.
- W2914756937 hasFunder F4320333065 @default.
- W2914756937 hasLocation W29147569371 @default.
- W2914756937 hasOpenAccess W2914756937 @default.
- W2914756937 hasPrimaryLocation W29147569371 @default.
- W2914756937 hasRelatedWork W2055359494 @default.
- W2914756937 hasRelatedWork W2102890828 @default.
- W2914756937 hasRelatedWork W2156886328 @default.