Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914778895> ?p ?o ?g. }
- W2914778895 abstract "Developing predictive modeling frameworks of potential cytotoxicity of engineered nanoparticles is critical for environmental and health risk analysis. The complexity and the heterogeneity of available data on potential risks of nanoparticles, in addition to interdependency of relevant influential attributes, makes it challenging to develop a generalization of nanoparticle toxicity behavior. Lack of systematic approaches to investigate these risks further adds uncertainties and variability to the body of literature and limits generalizability of existing studies. Here, we developed a rigorous approach for assembling published evidence on cytotoxicity of several organic and inorganic nanoparticles and unraveled hidden relationships that were not targeted in the original publications. We used a machine learning approach that employs decision trees together with feature selection algorithms (e.g., Gain ratio) to analyze a set of published nanoparticle cytotoxicity sample data (2896 samples). The specific studies were selected because they specified nanoparticle-, cell-, and screening method-related attributes. The resultant decision-tree classifiers are sufficiently simple, accurate, and with high prediction power and should be widely applicable to a spectrum of nanoparticle cytotoxicity settings. Among several influential attributes, we show that the cytotoxicity of nanoparticles is primarily predicted from the nanoparticle material chemistry, followed by nanoparticle concentration and size, cell type, and cytotoxicity screening indicator. Overall, our study indicates that following rigorous and transparent methodological experimental approaches, in parallel to continuous addition to this data set developed using our approach, will offer higher predictive power and accuracy and uncover hidden relationships. Results obtained in this study help focus future studies to develop nanoparticles that are safe by design." @default.
- W2914778895 created "2019-02-21" @default.
- W2914778895 creator A5000267814 @default.
- W2914778895 creator A5021501097 @default.
- W2914778895 creator A5022027799 @default.
- W2914778895 creator A5038711024 @default.
- W2914778895 date "2019-01-31" @default.
- W2914778895 modified "2023-10-16" @default.
- W2914778895 title "Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature" @default.
- W2914778895 cites W1563116824 @default.
- W2914778895 cites W1745059608 @default.
- W2914778895 cites W1968594112 @default.
- W2914778895 cites W1972578057 @default.
- W2914778895 cites W1982351846 @default.
- W2914778895 cites W1985876415 @default.
- W2914778895 cites W1987552279 @default.
- W2914778895 cites W1987583385 @default.
- W2914778895 cites W1991695439 @default.
- W2914778895 cites W1992756511 @default.
- W2914778895 cites W1996157249 @default.
- W2914778895 cites W2001931101 @default.
- W2914778895 cites W2001961700 @default.
- W2914778895 cites W2010883638 @default.
- W2914778895 cites W2023785357 @default.
- W2914778895 cites W2027876233 @default.
- W2914778895 cites W2029490817 @default.
- W2914778895 cites W2035431183 @default.
- W2914778895 cites W2052879067 @default.
- W2914778895 cites W2064620482 @default.
- W2914778895 cites W2077901294 @default.
- W2914778895 cites W2079364627 @default.
- W2914778895 cites W2081783802 @default.
- W2914778895 cites W2094348762 @default.
- W2914778895 cites W2095178267 @default.
- W2914778895 cites W2097709735 @default.
- W2914778895 cites W2103650174 @default.
- W2914778895 cites W2108611432 @default.
- W2914778895 cites W2127563174 @default.
- W2914778895 cites W2128245586 @default.
- W2914778895 cites W2135514753 @default.
- W2914778895 cites W2138418162 @default.
- W2914778895 cites W2139820378 @default.
- W2914778895 cites W2153887608 @default.
- W2914778895 cites W2199978910 @default.
- W2914778895 cites W2292437912 @default.
- W2914778895 cites W2295783320 @default.
- W2914778895 cites W2306550189 @default.
- W2914778895 cites W2516050856 @default.
- W2914778895 cites W2808861051 @default.
- W2914778895 cites W4243872385 @default.
- W2914778895 cites W73721486 @default.
- W2914778895 doi "https://doi.org/10.1021/acsnano.8b07562" @default.
- W2914778895 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30689359" @default.
- W2914778895 hasPublicationYear "2019" @default.
- W2914778895 type Work @default.
- W2914778895 sameAs 2914778895 @default.
- W2914778895 citedByCount "44" @default.
- W2914778895 countsByYear W29147788952019 @default.
- W2914778895 countsByYear W29147788952020 @default.
- W2914778895 countsByYear W29147788952021 @default.
- W2914778895 countsByYear W29147788952022 @default.
- W2914778895 countsByYear W29147788952023 @default.
- W2914778895 crossrefType "journal-article" @default.
- W2914778895 hasAuthorship W2914778895A5000267814 @default.
- W2914778895 hasAuthorship W2914778895A5021501097 @default.
- W2914778895 hasAuthorship W2914778895A5022027799 @default.
- W2914778895 hasAuthorship W2914778895A5038711024 @default.
- W2914778895 hasConcept C105795698 @default.
- W2914778895 hasConcept C109316439 @default.
- W2914778895 hasConcept C111472728 @default.
- W2914778895 hasConcept C119857082 @default.
- W2914778895 hasConcept C124101348 @default.
- W2914778895 hasConcept C127413603 @default.
- W2914778895 hasConcept C138885662 @default.
- W2914778895 hasConcept C154945302 @default.
- W2914778895 hasConcept C155672457 @default.
- W2914778895 hasConcept C171250308 @default.
- W2914778895 hasConcept C177264268 @default.
- W2914778895 hasConcept C183696295 @default.
- W2914778895 hasConcept C185592680 @default.
- W2914778895 hasConcept C192562407 @default.
- W2914778895 hasConcept C199360897 @default.
- W2914778895 hasConcept C202751555 @default.
- W2914778895 hasConcept C27158222 @default.
- W2914778895 hasConcept C2778136018 @default.
- W2914778895 hasConcept C33923547 @default.
- W2914778895 hasConcept C41008148 @default.
- W2914778895 hasConcept C55493867 @default.
- W2914778895 hasConcept C84525736 @default.
- W2914778895 hasConceptScore W2914778895C105795698 @default.
- W2914778895 hasConceptScore W2914778895C109316439 @default.
- W2914778895 hasConceptScore W2914778895C111472728 @default.
- W2914778895 hasConceptScore W2914778895C119857082 @default.
- W2914778895 hasConceptScore W2914778895C124101348 @default.
- W2914778895 hasConceptScore W2914778895C127413603 @default.
- W2914778895 hasConceptScore W2914778895C138885662 @default.
- W2914778895 hasConceptScore W2914778895C154945302 @default.
- W2914778895 hasConceptScore W2914778895C155672457 @default.
- W2914778895 hasConceptScore W2914778895C171250308 @default.
- W2914778895 hasConceptScore W2914778895C177264268 @default.