Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914795672> ?p ?o ?g. }
- W2914795672 endingPage "3407" @default.
- W2914795672 startingPage "3395" @default.
- W2914795672 abstract "Videos are spatio-temporally rich in static to dynamic objects/scenes, sparse to dense, and periodic to non-periodic motions. Particularly, the dynamic texture (DT) exhibits complex appearance and motion changes that remain a challenge to deal with. This paper presents an energy optimization method for feature extraction and recognition in videos. For noise and background jitter, the Tikhonov regularization with eigen-vector and Frenet-Serret formula-based energy constraints is also proposed. The different periodicity of DT can be adapted by the time-varying number of learning temporal frames. The optimal duration of an image sequence is determined from the temporal property of its eigen-values. Unlike the state-of-the-art recognition methods, i.e., sparse coding and slow feature analysis, the proposed method can capture the physical property of objects and scenes: velocity, acceleration, and orientation. Also, the static and dynamic image regions can be locally classified. Owing to these spatio-temporal features, stability, robustness, and accuracy of feature extraction and recognition are enhanced. Using DT videos, the superiority of the proposed method compared to the state-of-the-art recognition methods is experimentally shown." @default.
- W2914795672 created "2019-02-21" @default.
- W2914795672 creator A5023264894 @default.
- W2914795672 date "2019-07-01" @default.
- W2914795672 modified "2023-09-25" @default.
- W2914795672 title "Spatio-Temporal Feature Extraction/Recognition in Videos Based on Energy Optimization" @default.
- W2914795672 cites W1484247901 @default.
- W2914795672 cites W1505641881 @default.
- W2914795672 cites W1522734439 @default.
- W2914795672 cites W1628899544 @default.
- W2914795672 cites W178406657 @default.
- W2914795672 cites W18637838 @default.
- W2914795672 cites W1964991682 @default.
- W2914795672 cites W1976566382 @default.
- W2914795672 cites W2001002651 @default.
- W2914795672 cites W2001937638 @default.
- W2914795672 cites W2002128052 @default.
- W2914795672 cites W2006240628 @default.
- W2914795672 cites W2006963646 @default.
- W2914795672 cites W2012103782 @default.
- W2914795672 cites W2042248823 @default.
- W2914795672 cites W2082265779 @default.
- W2914795672 cites W2095463701 @default.
- W2914795672 cites W2096355572 @default.
- W2914795672 cites W2098579890 @default.
- W2914795672 cites W2098884960 @default.
- W2914795672 cites W2099046646 @default.
- W2914795672 cites W2106097225 @default.
- W2914795672 cites W2113983047 @default.
- W2914795672 cites W2119799051 @default.
- W2914795672 cites W2125647562 @default.
- W2914795672 cites W2138451337 @default.
- W2914795672 cites W2139916508 @default.
- W2914795672 cites W2142040002 @default.
- W2914795672 cites W2145023731 @default.
- W2914795672 cites W2146103513 @default.
- W2914795672 cites W2146444479 @default.
- W2914795672 cites W2146557250 @default.
- W2914795672 cites W2146966357 @default.
- W2914795672 cites W2150134853 @default.
- W2914795672 cites W2160022126 @default.
- W2914795672 cites W2162374132 @default.
- W2914795672 cites W2163588226 @default.
- W2914795672 cites W2166978545 @default.
- W2914795672 cites W2170282673 @default.
- W2914795672 cites W2170991533 @default.
- W2914795672 cites W2218665234 @default.
- W2914795672 cites W2461069268 @default.
- W2914795672 cites W2912155302 @default.
- W2914795672 cites W3003662786 @default.
- W2914795672 cites W4292023222 @default.
- W2914795672 doi "https://doi.org/10.1109/tip.2019.2896529" @default.
- W2914795672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30714924" @default.
- W2914795672 hasPublicationYear "2019" @default.
- W2914795672 type Work @default.
- W2914795672 sameAs 2914795672 @default.
- W2914795672 citedByCount "3" @default.
- W2914795672 countsByYear W29147956722020 @default.
- W2914795672 countsByYear W29147956722022 @default.
- W2914795672 crossrefType "journal-article" @default.
- W2914795672 hasAuthorship W2914795672A5023264894 @default.
- W2914795672 hasConcept C104317684 @default.
- W2914795672 hasConcept C111472728 @default.
- W2914795672 hasConcept C134306372 @default.
- W2914795672 hasConcept C135252773 @default.
- W2914795672 hasConcept C138885662 @default.
- W2914795672 hasConcept C152442038 @default.
- W2914795672 hasConcept C153180895 @default.
- W2914795672 hasConcept C154945302 @default.
- W2914795672 hasConcept C185592680 @default.
- W2914795672 hasConcept C189950617 @default.
- W2914795672 hasConcept C2776135515 @default.
- W2914795672 hasConcept C31972630 @default.
- W2914795672 hasConcept C33923547 @default.
- W2914795672 hasConcept C41008148 @default.
- W2914795672 hasConcept C52622490 @default.
- W2914795672 hasConcept C55493867 @default.
- W2914795672 hasConcept C63479239 @default.
- W2914795672 hasConceptScore W2914795672C104317684 @default.
- W2914795672 hasConceptScore W2914795672C111472728 @default.
- W2914795672 hasConceptScore W2914795672C134306372 @default.
- W2914795672 hasConceptScore W2914795672C135252773 @default.
- W2914795672 hasConceptScore W2914795672C138885662 @default.
- W2914795672 hasConceptScore W2914795672C152442038 @default.
- W2914795672 hasConceptScore W2914795672C153180895 @default.
- W2914795672 hasConceptScore W2914795672C154945302 @default.
- W2914795672 hasConceptScore W2914795672C185592680 @default.
- W2914795672 hasConceptScore W2914795672C189950617 @default.
- W2914795672 hasConceptScore W2914795672C2776135515 @default.
- W2914795672 hasConceptScore W2914795672C31972630 @default.
- W2914795672 hasConceptScore W2914795672C33923547 @default.
- W2914795672 hasConceptScore W2914795672C41008148 @default.
- W2914795672 hasConceptScore W2914795672C52622490 @default.
- W2914795672 hasConceptScore W2914795672C55493867 @default.
- W2914795672 hasConceptScore W2914795672C63479239 @default.
- W2914795672 hasIssue "7" @default.
- W2914795672 hasLocation W29147956721 @default.
- W2914795672 hasLocation W29147956722 @default.