Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914842020> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2914842020 abstract "Electroencephalographic (EEG) devices are utilized to measure the electrical activity of the human brain cost-effectively. In this technology, an electrical potential available on the scalp is measured. Special kind of sensors called electrodes are positioned on the scalp following international standards. One of the key benefits of the Electroencephalography is, the detectability of some brain disorders such as Epileptic Seizure. In addition to the medicinal usage, the EEG technology is often preferred by Brain Machine Interfacing (BMI) or Brain-Computer Interfacing (BCI) researchers to recognize a patient’s intentions. The objective is to control computers or machines according to the user’s intentions. In other words, BCI / BMI is an alternative hands-free Human-Computer Interaction (HCI) system which replaces the typical input devices such as a mouse or keyboard. In most BMI or BCI applications, a non-invasive EEG data acquisition approach is followed, using a consumer-grade EEG device. Such a device is equipped with only a few electrodes, causing a major drawback, limited accuracy (typically less than 70%). The only remedy for this issue is, improving the accuracy of the EEG data classifier, the computational algorithm to recognize the user intentions. In this paper, the applicability of a Multi-Agent System for EEG data classification is discussed, which has confirmed its competency in improving the accuracy by 17%, approximately." @default.
- W2914842020 created "2019-02-21" @default.
- W2914842020 creator A5023950394 @default.
- W2914842020 creator A5044647831 @default.
- W2914842020 creator A5056762048 @default.
- W2914842020 date "2018-12-01" @default.
- W2914842020 modified "2023-10-16" @default.
- W2914842020 title "A Multi-Agent System for Improving Electroencephalographic Data Classification Accuracy" @default.
- W2914842020 cites W1180593723 @default.
- W2914842020 cites W1574830153 @default.
- W2914842020 cites W1591198932 @default.
- W2914842020 cites W1634720708 @default.
- W2914842020 cites W182695033 @default.
- W2914842020 cites W2025751302 @default.
- W2914842020 cites W2032085365 @default.
- W2914842020 cites W2098113947 @default.
- W2914842020 cites W2122681235 @default.
- W2914842020 cites W2304788182 @default.
- W2914842020 cites W2341830677 @default.
- W2914842020 cites W2344494860 @default.
- W2914842020 cites W2469925487 @default.
- W2914842020 cites W2601938104 @default.
- W2914842020 cites W2617938108 @default.
- W2914842020 cites W2793338488 @default.
- W2914842020 cites W2963626267 @default.
- W2914842020 cites W579774792 @default.
- W2914842020 doi "https://doi.org/10.1109/r10-htc.2018.8629860" @default.
- W2914842020 hasPublicationYear "2018" @default.
- W2914842020 type Work @default.
- W2914842020 sameAs 2914842020 @default.
- W2914842020 citedByCount "1" @default.
- W2914842020 countsByYear W29148420202021 @default.
- W2914842020 crossrefType "proceedings-article" @default.
- W2914842020 hasAuthorship W2914842020A5023950394 @default.
- W2914842020 hasAuthorship W2914842020A5044647831 @default.
- W2914842020 hasAuthorship W2914842020A5056762048 @default.
- W2914842020 hasConcept C107457646 @default.
- W2914842020 hasConcept C113843644 @default.
- W2914842020 hasConcept C129307140 @default.
- W2914842020 hasConcept C153180895 @default.
- W2914842020 hasConcept C154945302 @default.
- W2914842020 hasConcept C15744967 @default.
- W2914842020 hasConcept C157915830 @default.
- W2914842020 hasConcept C169760540 @default.
- W2914842020 hasConcept C173201364 @default.
- W2914842020 hasConcept C173608175 @default.
- W2914842020 hasConcept C2776303644 @default.
- W2914842020 hasConcept C41008148 @default.
- W2914842020 hasConcept C522805319 @default.
- W2914842020 hasConcept C9390403 @default.
- W2914842020 hasConcept C95623464 @default.
- W2914842020 hasConceptScore W2914842020C107457646 @default.
- W2914842020 hasConceptScore W2914842020C113843644 @default.
- W2914842020 hasConceptScore W2914842020C129307140 @default.
- W2914842020 hasConceptScore W2914842020C153180895 @default.
- W2914842020 hasConceptScore W2914842020C154945302 @default.
- W2914842020 hasConceptScore W2914842020C15744967 @default.
- W2914842020 hasConceptScore W2914842020C157915830 @default.
- W2914842020 hasConceptScore W2914842020C169760540 @default.
- W2914842020 hasConceptScore W2914842020C173201364 @default.
- W2914842020 hasConceptScore W2914842020C173608175 @default.
- W2914842020 hasConceptScore W2914842020C2776303644 @default.
- W2914842020 hasConceptScore W2914842020C41008148 @default.
- W2914842020 hasConceptScore W2914842020C522805319 @default.
- W2914842020 hasConceptScore W2914842020C9390403 @default.
- W2914842020 hasConceptScore W2914842020C95623464 @default.
- W2914842020 hasLocation W29148420201 @default.
- W2914842020 hasOpenAccess W2914842020 @default.
- W2914842020 hasPrimaryLocation W29148420201 @default.
- W2914842020 hasRelatedWork W1978713608 @default.
- W2914842020 hasRelatedWork W2184993078 @default.
- W2914842020 hasRelatedWork W2325868918 @default.
- W2914842020 hasRelatedWork W2565554504 @default.
- W2914842020 hasRelatedWork W2584137332 @default.
- W2914842020 hasRelatedWork W2736271933 @default.
- W2914842020 hasRelatedWork W3102064996 @default.
- W2914842020 hasRelatedWork W3139393943 @default.
- W2914842020 hasRelatedWork W6771425 @default.
- W2914842020 hasRelatedWork W85026043 @default.
- W2914842020 isParatext "false" @default.
- W2914842020 isRetracted "false" @default.
- W2914842020 magId "2914842020" @default.
- W2914842020 workType "article" @default.