Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914901115> ?p ?o ?g. }
- W2914901115 abstract "Abstract Machining shop floor jobs are rarely optimised for minimisation of the energy consumption, as no clear guidelines exist in operating procedures and high production rates and finishing quality are requirements with higher priorities. However, there has been an increased interest recently in more energy-efficient process designs, due to new regulations and increases in energy charges. Response Surface Methodology (RSM) is a popular procedure using empirical models for optimising the energy consumption in cutting operations, but successful deployment requires good understanding of the methods employed and certain steps are time-consuming. In this work, a novel method that automates the feature extraction when applying RSM is presented. Central to the approach is a continuous Hidden Markov model, where the probability distribution of the observations at each state is represented by a mixture of Gaussian distributions. When applied to a case study, the automated extracted material cutting energies lay within 1.12% of measured values and the spindle acceleration energies within 3.33% of their actual values." @default.
- W2914901115 created "2019-02-21" @default.
- W2914901115 creator A5007640209 @default.
- W2914901115 creator A5033406178 @default.
- W2914901115 creator A5039589583 @default.
- W2914901115 creator A5042009599 @default.
- W2914901115 date "2019-06-01" @default.
- W2914901115 modified "2023-10-17" @default.
- W2914901115 title "An automated feature extraction method with application to empirical model development from machining power data" @default.
- W2914901115 cites W1511320307 @default.
- W2914901115 cites W1640078272 @default.
- W2914901115 cites W1840640513 @default.
- W2914901115 cites W1894414046 @default.
- W2914901115 cites W1972362576 @default.
- W2914901115 cites W1982445933 @default.
- W2914901115 cites W1987376434 @default.
- W2914901115 cites W1992840542 @default.
- W2914901115 cites W2006057314 @default.
- W2914901115 cites W2013066525 @default.
- W2914901115 cites W2022413779 @default.
- W2914901115 cites W2030891177 @default.
- W2914901115 cites W2035508782 @default.
- W2914901115 cites W2035589316 @default.
- W2914901115 cites W2042233534 @default.
- W2914901115 cites W2042415399 @default.
- W2914901115 cites W2049633694 @default.
- W2914901115 cites W2053942652 @default.
- W2914901115 cites W2065826017 @default.
- W2914901115 cites W2066113561 @default.
- W2914901115 cites W2073147877 @default.
- W2914901115 cites W2080314777 @default.
- W2914901115 cites W2085535099 @default.
- W2914901115 cites W2094064573 @default.
- W2914901115 cites W2098677060 @default.
- W2914901115 cites W2106595237 @default.
- W2914901115 cites W2107633943 @default.
- W2914901115 cites W2125838338 @default.
- W2914901115 cites W2127095067 @default.
- W2914901115 cites W2135537007 @default.
- W2914901115 cites W2136712752 @default.
- W2914901115 cites W2142285455 @default.
- W2914901115 cites W2142384583 @default.
- W2914901115 cites W2143754924 @default.
- W2914901115 cites W2152621450 @default.
- W2914901115 cites W2152770371 @default.
- W2914901115 cites W2168175751 @default.
- W2914901115 cites W2168227362 @default.
- W2914901115 cites W2183780548 @default.
- W2914901115 cites W2237440835 @default.
- W2914901115 cites W2257850429 @default.
- W2914901115 cites W2424857311 @default.
- W2914901115 cites W2606666066 @default.
- W2914901115 cites W2615714420 @default.
- W2914901115 cites W3131749772 @default.
- W2914901115 cites W574506127 @default.
- W2914901115 cites W2185581830 @default.
- W2914901115 doi "https://doi.org/10.1016/j.ymssp.2019.01.023" @default.
- W2914901115 hasPublicationYear "2019" @default.
- W2914901115 type Work @default.
- W2914901115 sameAs 2914901115 @default.
- W2914901115 citedByCount "5" @default.
- W2914901115 countsByYear W29149011152020 @default.
- W2914901115 countsByYear W29149011152021 @default.
- W2914901115 countsByYear W29149011152022 @default.
- W2914901115 crossrefType "journal-article" @default.
- W2914901115 hasAuthorship W2914901115A5007640209 @default.
- W2914901115 hasAuthorship W2914901115A5033406178 @default.
- W2914901115 hasAuthorship W2914901115A5039589583 @default.
- W2914901115 hasAuthorship W2914901115A5042009599 @default.
- W2914901115 hasBestOaLocation W29149011151 @default.
- W2914901115 hasConcept C105339364 @default.
- W2914901115 hasConcept C111919701 @default.
- W2914901115 hasConcept C119599485 @default.
- W2914901115 hasConcept C119857082 @default.
- W2914901115 hasConcept C127413603 @default.
- W2914901115 hasConcept C133199616 @default.
- W2914901115 hasConcept C138885662 @default.
- W2914901115 hasConcept C150077022 @default.
- W2914901115 hasConcept C154945302 @default.
- W2914901115 hasConcept C23224414 @default.
- W2914901115 hasConcept C2776401178 @default.
- W2914901115 hasConcept C2780165032 @default.
- W2914901115 hasConcept C41008148 @default.
- W2914901115 hasConcept C41895202 @default.
- W2914901115 hasConcept C44154836 @default.
- W2914901115 hasConcept C523214423 @default.
- W2914901115 hasConcept C61224824 @default.
- W2914901115 hasConcept C78519656 @default.
- W2914901115 hasConceptScore W2914901115C105339364 @default.
- W2914901115 hasConceptScore W2914901115C111919701 @default.
- W2914901115 hasConceptScore W2914901115C119599485 @default.
- W2914901115 hasConceptScore W2914901115C119857082 @default.
- W2914901115 hasConceptScore W2914901115C127413603 @default.
- W2914901115 hasConceptScore W2914901115C133199616 @default.
- W2914901115 hasConceptScore W2914901115C138885662 @default.
- W2914901115 hasConceptScore W2914901115C150077022 @default.
- W2914901115 hasConceptScore W2914901115C154945302 @default.
- W2914901115 hasConceptScore W2914901115C23224414 @default.
- W2914901115 hasConceptScore W2914901115C2776401178 @default.
- W2914901115 hasConceptScore W2914901115C2780165032 @default.