Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914906787> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2914906787 abstract "Electromyography (EMG) signal obtained from muscles need advance methods for detection, processing and classification. The purpose of this paper is to analyze muscle fatigue from EMG signals. At the beginning, 15 subjects will answer a set of questionnaires. The score of the questionnaires will be calculated and the score will determine if the driver is fatigued or mild fatigue or fatigue based on their driving habit. Next, EMG signals will be collected by placing two surface electrodes on the Brachioradialis muscle located at the forearm while driving Need For Speed (NFS) game. A simulation set of steering and pedals will be controlled during the driving game. The drivers drive for two hours and the EMG signal will be collected during they are driving. The output signals will be pre-processed to remove any noise in the signal. After that, the data is normalized between value 0 to 1 and the signal is analyzed using frequency analysis and time analysis. Mean and variance will be calculated for time domain analysis and graph of mean versus variance is plotted. In frequency domain analysis, Power Spectral Density (PSD) is extracted from the peak frequency of PSD in each signal is obtained. All results will be divided into three classes: non-fatigue, mild-fatigue and fatigue. Based on results obtained in time domain, average normalized mean (non-fatigue: 0.5004), (mild-fatigue: 0.497) and (fatigue: 0.494). While, for frequency domain analysis, average peak frequency (non-fatigue: 13.379 Hz), (mild-fatigue: 11.969 Hz) and (fatigue: 12.782 Hz)." @default.
- W2914906787 created "2019-02-21" @default.
- W2914906787 creator A5013458188 @default.
- W2914906787 creator A5049905827 @default.
- W2914906787 creator A5050681822 @default.
- W2914906787 creator A5056910426 @default.
- W2914906787 creator A5057030001 @default.
- W2914906787 creator A5057209123 @default.
- W2914906787 date "2019-01-01" @default.
- W2914906787 modified "2023-10-17" @default.
- W2914906787 title "Electromyograph (EMG) Signal Analysis to Predict Muscle Fatigue During Driving" @default.
- W2914906787 cites W1930115588 @default.
- W2914906787 cites W2037403002 @default.
- W2914906787 cites W2153578909 @default.
- W2914906787 cites W2156914236 @default.
- W2914906787 cites W2158728671 @default.
- W2914906787 cites W2783133210 @default.
- W2914906787 doi "https://doi.org/10.1007/978-981-13-3708-6_35" @default.
- W2914906787 hasPublicationYear "2019" @default.
- W2914906787 type Work @default.
- W2914906787 sameAs 2914906787 @default.
- W2914906787 citedByCount "2" @default.
- W2914906787 countsByYear W29149067872020 @default.
- W2914906787 countsByYear W29149067872021 @default.
- W2914906787 crossrefType "book-chapter" @default.
- W2914906787 hasAuthorship W2914906787A5013458188 @default.
- W2914906787 hasAuthorship W2914906787A5049905827 @default.
- W2914906787 hasAuthorship W2914906787A5050681822 @default.
- W2914906787 hasAuthorship W2914906787A5056910426 @default.
- W2914906787 hasAuthorship W2914906787A5057030001 @default.
- W2914906787 hasAuthorship W2914906787A5057209123 @default.
- W2914906787 hasConcept C103824480 @default.
- W2914906787 hasConcept C115961682 @default.
- W2914906787 hasConcept C154945302 @default.
- W2914906787 hasConcept C19118579 @default.
- W2914906787 hasConcept C199360897 @default.
- W2914906787 hasConcept C2776874296 @default.
- W2914906787 hasConcept C2777515770 @default.
- W2914906787 hasConcept C2779843651 @default.
- W2914906787 hasConcept C2780824610 @default.
- W2914906787 hasConcept C31972630 @default.
- W2914906787 hasConcept C33923547 @default.
- W2914906787 hasConcept C41008148 @default.
- W2914906787 hasConcept C71924100 @default.
- W2914906787 hasConcept C99498987 @default.
- W2914906787 hasConcept C99508421 @default.
- W2914906787 hasConceptScore W2914906787C103824480 @default.
- W2914906787 hasConceptScore W2914906787C115961682 @default.
- W2914906787 hasConceptScore W2914906787C154945302 @default.
- W2914906787 hasConceptScore W2914906787C19118579 @default.
- W2914906787 hasConceptScore W2914906787C199360897 @default.
- W2914906787 hasConceptScore W2914906787C2776874296 @default.
- W2914906787 hasConceptScore W2914906787C2777515770 @default.
- W2914906787 hasConceptScore W2914906787C2779843651 @default.
- W2914906787 hasConceptScore W2914906787C2780824610 @default.
- W2914906787 hasConceptScore W2914906787C31972630 @default.
- W2914906787 hasConceptScore W2914906787C33923547 @default.
- W2914906787 hasConceptScore W2914906787C41008148 @default.
- W2914906787 hasConceptScore W2914906787C71924100 @default.
- W2914906787 hasConceptScore W2914906787C99498987 @default.
- W2914906787 hasConceptScore W2914906787C99508421 @default.
- W2914906787 hasLocation W29149067871 @default.
- W2914906787 hasOpenAccess W2914906787 @default.
- W2914906787 hasPrimaryLocation W29149067871 @default.
- W2914906787 hasRelatedWork W1976551888 @default.
- W2914906787 hasRelatedWork W2036971177 @default.
- W2914906787 hasRelatedWork W2092214794 @default.
- W2914906787 hasRelatedWork W2465868092 @default.
- W2914906787 hasRelatedWork W2597682641 @default.
- W2914906787 hasRelatedWork W2744258128 @default.
- W2914906787 hasRelatedWork W2759019305 @default.
- W2914906787 hasRelatedWork W2799506782 @default.
- W2914906787 hasRelatedWork W2914906787 @default.
- W2914906787 hasRelatedWork W2538238842 @default.
- W2914906787 isParatext "false" @default.
- W2914906787 isRetracted "false" @default.
- W2914906787 magId "2914906787" @default.
- W2914906787 workType "book-chapter" @default.