Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914975918> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2914975918 abstract "In this study, we have proposed a domain-independent text segmentation algorithm which is particularly useful in online educational courses. Text segmentation is proven to be helpful in improving the readability of large corpora of documents, which is essential in education scenarios. While existing domain-dependent text segmentation methods have much better performance than domain-independent methods in most cases, only domain-independent methods are applicable to sparse training content in education scenarios. Our method, unlike other domain-dependent text segmentation methods, doesn't require heavy training on prior documents, but only need to train on the current corpus of documents with topic distributions and word vector representations. Our proposed method develops text boundaries between small text units in three steps. We first calculate input text features via topical distributions (latent Dirichlet allocation) and word embeddings (GloVe). We then calculate similarity values between such textual features and detect distribution changes between the similarities. We finally perform clustering on the similarities and detect sub-topic boundaries via cluster differences. We test our method on two datasets, one from an online education course and one from a popular public dataset - Choi Dataset. The results demonstrate that our method outperforms other state-of-the-art domain-independent text segmentation approaches while achieving performance comparable to a few domain-dependent algorithms." @default.
- W2914975918 created "2019-02-21" @default.
- W2914975918 creator A5020399355 @default.
- W2914975918 creator A5031742177 @default.
- W2914975918 creator A5034290509 @default.
- W2914975918 creator A5045947650 @default.
- W2914975918 date "2018-11-01" @default.
- W2914975918 modified "2023-09-23" @default.
- W2914975918 title "A Domain-Independent Text Segmentation Method for Educational Course Content" @default.
- W2914975918 cites W1557074680 @default.
- W2914975918 cites W1994448786 @default.
- W2914975918 cites W2018627475 @default.
- W2914975918 cites W2028757787 @default.
- W2914975918 cites W2038043464 @default.
- W2914975918 cites W2100626830 @default.
- W2914975918 cites W2106918957 @default.
- W2914975918 cites W2148818577 @default.
- W2914975918 cites W2158652061 @default.
- W2914975918 cites W2165232124 @default.
- W2914975918 cites W2166490638 @default.
- W2914975918 cites W2250539671 @default.
- W2914975918 cites W2462891382 @default.
- W2914975918 cites W2548441837 @default.
- W2914975918 cites W2715423655 @default.
- W2914975918 cites W2757395123 @default.
- W2914975918 cites W2763298512 @default.
- W2914975918 cites W2807938752 @default.
- W2914975918 cites W4238205294 @default.
- W2914975918 doi "https://doi.org/10.1109/icdmw.2018.00053" @default.
- W2914975918 hasPublicationYear "2018" @default.
- W2914975918 type Work @default.
- W2914975918 sameAs 2914975918 @default.
- W2914975918 citedByCount "3" @default.
- W2914975918 countsByYear W29149759182020 @default.
- W2914975918 crossrefType "proceedings-article" @default.
- W2914975918 hasAuthorship W2914975918A5020399355 @default.
- W2914975918 hasAuthorship W2914975918A5031742177 @default.
- W2914975918 hasAuthorship W2914975918A5034290509 @default.
- W2914975918 hasAuthorship W2914975918A5045947650 @default.
- W2914975918 hasConcept C124504099 @default.
- W2914975918 hasConcept C127413603 @default.
- W2914975918 hasConcept C134306372 @default.
- W2914975918 hasConcept C146978453 @default.
- W2914975918 hasConcept C154945302 @default.
- W2914975918 hasConcept C204321447 @default.
- W2914975918 hasConcept C23123220 @default.
- W2914975918 hasConcept C2777552389 @default.
- W2914975918 hasConcept C2778152352 @default.
- W2914975918 hasConcept C33923547 @default.
- W2914975918 hasConcept C36503486 @default.
- W2914975918 hasConcept C41008148 @default.
- W2914975918 hasConcept C89600930 @default.
- W2914975918 hasConceptScore W2914975918C124504099 @default.
- W2914975918 hasConceptScore W2914975918C127413603 @default.
- W2914975918 hasConceptScore W2914975918C134306372 @default.
- W2914975918 hasConceptScore W2914975918C146978453 @default.
- W2914975918 hasConceptScore W2914975918C154945302 @default.
- W2914975918 hasConceptScore W2914975918C204321447 @default.
- W2914975918 hasConceptScore W2914975918C23123220 @default.
- W2914975918 hasConceptScore W2914975918C2777552389 @default.
- W2914975918 hasConceptScore W2914975918C2778152352 @default.
- W2914975918 hasConceptScore W2914975918C33923547 @default.
- W2914975918 hasConceptScore W2914975918C36503486 @default.
- W2914975918 hasConceptScore W2914975918C41008148 @default.
- W2914975918 hasConceptScore W2914975918C89600930 @default.
- W2914975918 hasLocation W29149759181 @default.
- W2914975918 hasOpenAccess W2914975918 @default.
- W2914975918 hasPrimaryLocation W29149759181 @default.
- W2914975918 hasRelatedWork W2045391057 @default.
- W2914975918 hasRelatedWork W2119108994 @default.
- W2914975918 hasRelatedWork W2149145677 @default.
- W2914975918 hasRelatedWork W2152591411 @default.
- W2914975918 hasRelatedWork W2548218638 @default.
- W2914975918 hasRelatedWork W2903115243 @default.
- W2914975918 hasRelatedWork W2948522034 @default.
- W2914975918 hasRelatedWork W3107474891 @default.
- W2914975918 hasRelatedWork W3127804355 @default.
- W2914975918 hasRelatedWork W3161321444 @default.
- W2914975918 isParatext "false" @default.
- W2914975918 isRetracted "false" @default.
- W2914975918 magId "2914975918" @default.
- W2914975918 workType "article" @default.