Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914978103> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2914978103 endingPage "53" @default.
- W2914978103 startingPage "42" @default.
- W2914978103 abstract "Abstract The performance of graph cut based interactive object segmentation approach depends highly on the size of the image. For high-resolution images, it requires an unacceptable amount of storage and time and becomes even more complex when the image has textural contents. In this work, we present an efficient approach to graph cut based texture segmentation by extracting texture features and reducing the overall size of the graph. To extract texture features, Non-decimated Complex Wavelet Transform (NDCWT) is employed whose sub-bands present the texture attributes at different scales and orientations. Moreover, to deal with the huge computational burdens caused by large images, we consider partitioning of the image area where the image is divided into equal-sized non-overlapping blocks and each such block is mapped to a node in the graph. This will not only reduce the size of the graph but also expedite the optimization process significantly. To achieve pixel level accuracy without using any boundary editing, the blocks lying on the boundary are identified and the final segmentation is obtained by applying the standard graph cut on the pixels of such blocks. Thus our approach is able to retain full resolution accuracy with minimal user interaction as opposed to the pre-segmentation or super-pixel based graph cut approaches. Experiments have been conducted on various gray scale as well as color texture images from Brodatz, Berkeley and MSRC datasets which reveal that the proposed approach not only reduces the segmentation time and memory consumption but also improves segmentation accuracy significantly." @default.
- W2914978103 created "2019-02-21" @default.
- W2914978103 creator A5026786433 @default.
- W2914978103 creator A5063385528 @default.
- W2914978103 date "2019-05-01" @default.
- W2914978103 modified "2023-10-01" @default.
- W2914978103 title "An efficient graph reduction framework for interactive texture segmentation" @default.
- W2914978103 cites W1970018890 @default.
- W2914978103 cites W1981288815 @default.
- W2914978103 cites W1987983010 @default.
- W2914978103 cites W1993269503 @default.
- W2914978103 cites W2027170820 @default.
- W2914978103 cites W2088985501 @default.
- W2914978103 cites W2101309634 @default.
- W2914978103 cites W2104095591 @default.
- W2914978103 cites W2106304347 @default.
- W2914978103 cites W2113137767 @default.
- W2914978103 cites W2114650767 @default.
- W2914978103 cites W2119300483 @default.
- W2914978103 cites W2119872803 @default.
- W2914978103 cites W2125637308 @default.
- W2914978103 cites W2141834896 @default.
- W2914978103 cites W2143516773 @default.
- W2914978103 cites W2147188488 @default.
- W2914978103 cites W2403496633 @default.
- W2914978103 cites W2601179824 @default.
- W2914978103 cites W2770655971 @default.
- W2914978103 cites W2795771894 @default.
- W2914978103 doi "https://doi.org/10.1016/j.image.2019.01.010" @default.
- W2914978103 hasPublicationYear "2019" @default.
- W2914978103 type Work @default.
- W2914978103 sameAs 2914978103 @default.
- W2914978103 citedByCount "5" @default.
- W2914978103 countsByYear W29149781032020 @default.
- W2914978103 countsByYear W29149781032021 @default.
- W2914978103 countsByYear W29149781032022 @default.
- W2914978103 crossrefType "journal-article" @default.
- W2914978103 hasAuthorship W2914978103A5026786433 @default.
- W2914978103 hasAuthorship W2914978103A5063385528 @default.
- W2914978103 hasConcept C111335779 @default.
- W2914978103 hasConcept C115961682 @default.
- W2914978103 hasConcept C132525143 @default.
- W2914978103 hasConcept C153180895 @default.
- W2914978103 hasConcept C154945302 @default.
- W2914978103 hasConcept C2524010 @default.
- W2914978103 hasConcept C2781195486 @default.
- W2914978103 hasConcept C31972630 @default.
- W2914978103 hasConcept C33923547 @default.
- W2914978103 hasConcept C41008148 @default.
- W2914978103 hasConcept C80444323 @default.
- W2914978103 hasConcept C89600930 @default.
- W2914978103 hasConceptScore W2914978103C111335779 @default.
- W2914978103 hasConceptScore W2914978103C115961682 @default.
- W2914978103 hasConceptScore W2914978103C132525143 @default.
- W2914978103 hasConceptScore W2914978103C153180895 @default.
- W2914978103 hasConceptScore W2914978103C154945302 @default.
- W2914978103 hasConceptScore W2914978103C2524010 @default.
- W2914978103 hasConceptScore W2914978103C2781195486 @default.
- W2914978103 hasConceptScore W2914978103C31972630 @default.
- W2914978103 hasConceptScore W2914978103C33923547 @default.
- W2914978103 hasConceptScore W2914978103C41008148 @default.
- W2914978103 hasConceptScore W2914978103C80444323 @default.
- W2914978103 hasConceptScore W2914978103C89600930 @default.
- W2914978103 hasLocation W29149781031 @default.
- W2914978103 hasOpenAccess W2914978103 @default.
- W2914978103 hasPrimaryLocation W29149781031 @default.
- W2914978103 hasRelatedWork W1669643531 @default.
- W2914978103 hasRelatedWork W2005437358 @default.
- W2914978103 hasRelatedWork W2008656436 @default.
- W2914978103 hasRelatedWork W2023558673 @default.
- W2914978103 hasRelatedWork W2039154422 @default.
- W2914978103 hasRelatedWork W2122581818 @default.
- W2914978103 hasRelatedWork W2134924024 @default.
- W2914978103 hasRelatedWork W2517104666 @default.
- W2914978103 hasRelatedWork W2895616727 @default.
- W2914978103 hasRelatedWork W2182382398 @default.
- W2914978103 hasVolume "74" @default.
- W2914978103 isParatext "false" @default.
- W2914978103 isRetracted "false" @default.
- W2914978103 magId "2914978103" @default.
- W2914978103 workType "article" @default.