Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914987341> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2914987341 endingPage "327" @default.
- W2914987341 startingPage "311" @default.
- W2914987341 abstract "Each part of internal structure of cells which is commonly mentioned as subcellular is highly ordered and interconnected has unique functions. The experiments show that deviated protein delivery to the corresponding subcellular causes of human disease. Studies of protein localization can clarify pathogenesis and find treatments. As protein subcellular localization has a very important position in the field of biology, the research in this area is extremely active. Most of the existing protein sub cellular localization methods are more suitable for single-site sub cellular localization. This paper proposed an algorithm based deep convolution neural network which is suit for multi-site protein subcellular localization and the algorithm is implemented on the human protein database to verify and analyze the performance. In order to further improve the classification result of the algorithm, it was combined ensemble learning and features fusion. It can be inferred from experiments that the proposed algorithm is effective in multi-site protein subcellular localization and the overall correct rate of classification is 59.13% which is higher than SAE, SVM and RF. The algorithm proposed in this paper is more uniform and less affected by the number of samples. When the data samples are different, the classification results will have a certain impact, but the overall classification is good. Besides ensemble learning and features fusion are effective for improving classification result." @default.
- W2914987341 created "2019-02-21" @default.
- W2914987341 creator A5016306061 @default.
- W2914987341 creator A5036479222 @default.
- W2914987341 creator A5055675902 @default.
- W2914987341 creator A5056637316 @default.
- W2914987341 creator A5073216396 @default.
- W2914987341 date "2019-02-06" @default.
- W2914987341 modified "2023-09-25" @default.
- W2914987341 title "Multi-Site Protein Subcellular Localization Based on Deep Convolutional Neural Network" @default.
- W2914987341 cites W2012210483 @default.
- W2914987341 cites W2060963121 @default.
- W2914987341 cites W2127103767 @default.
- W2914987341 cites W2154477800 @default.
- W2914987341 cites W2166406676 @default.
- W2914987341 cites W2566825588 @default.
- W2914987341 cites W2570805434 @default.
- W2914987341 cites W642355537 @default.
- W2914987341 doi "https://doi.org/10.18314/jnb.v5i1.1580" @default.
- W2914987341 hasPublicationYear "2019" @default.
- W2914987341 type Work @default.
- W2914987341 sameAs 2914987341 @default.
- W2914987341 citedByCount "0" @default.
- W2914987341 crossrefType "journal-article" @default.
- W2914987341 hasAuthorship W2914987341A5016306061 @default.
- W2914987341 hasAuthorship W2914987341A5036479222 @default.
- W2914987341 hasAuthorship W2914987341A5055675902 @default.
- W2914987341 hasAuthorship W2914987341A5056637316 @default.
- W2914987341 hasAuthorship W2914987341A5073216396 @default.
- W2914987341 hasBestOaLocation W29149873411 @default.
- W2914987341 hasConcept C104317684 @default.
- W2914987341 hasConcept C12267149 @default.
- W2914987341 hasConcept C140051345 @default.
- W2914987341 hasConcept C153180895 @default.
- W2914987341 hasConcept C154945302 @default.
- W2914987341 hasConcept C190062978 @default.
- W2914987341 hasConcept C2776879804 @default.
- W2914987341 hasConcept C41008148 @default.
- W2914987341 hasConcept C45347329 @default.
- W2914987341 hasConcept C50644808 @default.
- W2914987341 hasConcept C55493867 @default.
- W2914987341 hasConcept C81363708 @default.
- W2914987341 hasConcept C86803240 @default.
- W2914987341 hasConcept C95444343 @default.
- W2914987341 hasConceptScore W2914987341C104317684 @default.
- W2914987341 hasConceptScore W2914987341C12267149 @default.
- W2914987341 hasConceptScore W2914987341C140051345 @default.
- W2914987341 hasConceptScore W2914987341C153180895 @default.
- W2914987341 hasConceptScore W2914987341C154945302 @default.
- W2914987341 hasConceptScore W2914987341C190062978 @default.
- W2914987341 hasConceptScore W2914987341C2776879804 @default.
- W2914987341 hasConceptScore W2914987341C41008148 @default.
- W2914987341 hasConceptScore W2914987341C45347329 @default.
- W2914987341 hasConceptScore W2914987341C50644808 @default.
- W2914987341 hasConceptScore W2914987341C55493867 @default.
- W2914987341 hasConceptScore W2914987341C81363708 @default.
- W2914987341 hasConceptScore W2914987341C86803240 @default.
- W2914987341 hasConceptScore W2914987341C95444343 @default.
- W2914987341 hasLocation W29149873411 @default.
- W2914987341 hasOpenAccess W2914987341 @default.
- W2914987341 hasPrimaryLocation W29149873411 @default.
- W2914987341 hasRelatedWork W2041399278 @default.
- W2914987341 hasRelatedWork W2099369243 @default.
- W2914987341 hasRelatedWork W2120008580 @default.
- W2914987341 hasRelatedWork W2136184105 @default.
- W2914987341 hasRelatedWork W2996933976 @default.
- W2914987341 hasRelatedWork W3193301557 @default.
- W2914987341 hasRelatedWork W3208266890 @default.
- W2914987341 hasRelatedWork W4223656335 @default.
- W2914987341 hasRelatedWork W4285503465 @default.
- W2914987341 hasRelatedWork W2345184372 @default.
- W2914987341 isParatext "false" @default.
- W2914987341 isRetracted "false" @default.
- W2914987341 magId "2914987341" @default.
- W2914987341 workType "article" @default.