Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915027494> ?p ?o ?g. }
- W2915027494 endingPage "212" @default.
- W2915027494 startingPage "189" @default.
- W2915027494 abstract "Abstract Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemK NSep ) and separable ST‐SemK (ST‐SemK Sep ). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods." @default.
- W2915027494 created "2019-02-21" @default.
- W2915027494 creator A5019016567 @default.
- W2915027494 creator A5030936455 @default.
- W2915027494 creator A5086814847 @default.
- W2915027494 date "2020-01-19" @default.
- W2915027494 modified "2023-09-27" @default.
- W2915027494 title "Spatio‐temporal prediction of land surface temperature using semantic kriging" @default.
- W2915027494 cites W1781324546 @default.
- W2915027494 cites W1922448215 @default.
- W2915027494 cites W1963507404 @default.
- W2915027494 cites W1970321445 @default.
- W2915027494 cites W1973749534 @default.
- W2915027494 cites W1985133040 @default.
- W2915027494 cites W1990960517 @default.
- W2915027494 cites W2003193164 @default.
- W2915027494 cites W2014446298 @default.
- W2915027494 cites W2017773864 @default.
- W2915027494 cites W2023059429 @default.
- W2915027494 cites W2047039932 @default.
- W2915027494 cites W2053683629 @default.
- W2915027494 cites W2058073713 @default.
- W2915027494 cites W2067509986 @default.
- W2915027494 cites W2084225991 @default.
- W2915027494 cites W2088850108 @default.
- W2915027494 cites W2089055951 @default.
- W2915027494 cites W2089731682 @default.
- W2915027494 cites W2095311251 @default.
- W2915027494 cites W2105418135 @default.
- W2915027494 cites W2108771490 @default.
- W2915027494 cites W2124200887 @default.
- W2915027494 cites W2138806405 @default.
- W2915027494 cites W2144249859 @default.
- W2915027494 cites W2176635760 @default.
- W2915027494 cites W2229319020 @default.
- W2915027494 cites W2285532094 @default.
- W2915027494 cites W2466262867 @default.
- W2915027494 cites W2511507017 @default.
- W2915027494 cites W2528677926 @default.
- W2915027494 cites W2529373853 @default.
- W2915027494 cites W2570830654 @default.
- W2915027494 cites W2765806562 @default.
- W2915027494 cites W2767898810 @default.
- W2915027494 cites W2769921082 @default.
- W2915027494 cites W2777168572 @default.
- W2915027494 cites W2887134906 @default.
- W2915027494 cites W3099527008 @default.
- W2915027494 doi "https://doi.org/10.1111/tgis.12596" @default.
- W2915027494 hasPublicationYear "2020" @default.
- W2915027494 type Work @default.
- W2915027494 sameAs 2915027494 @default.
- W2915027494 citedByCount "7" @default.
- W2915027494 countsByYear W29150274942020 @default.
- W2915027494 countsByYear W29150274942021 @default.
- W2915027494 countsByYear W29150274942022 @default.
- W2915027494 countsByYear W29150274942023 @default.
- W2915027494 crossrefType "journal-article" @default.
- W2915027494 hasAuthorship W2915027494A5019016567 @default.
- W2915027494 hasAuthorship W2915027494A5030936455 @default.
- W2915027494 hasAuthorship W2915027494A5086814847 @default.
- W2915027494 hasBestOaLocation W29150274941 @default.
- W2915027494 hasConcept C105795698 @default.
- W2915027494 hasConcept C115961682 @default.
- W2915027494 hasConcept C127413603 @default.
- W2915027494 hasConcept C137800194 @default.
- W2915027494 hasConcept C146978453 @default.
- W2915027494 hasConcept C147176958 @default.
- W2915027494 hasConcept C154945302 @default.
- W2915027494 hasConcept C160633673 @default.
- W2915027494 hasConcept C161840515 @default.
- W2915027494 hasConcept C19269812 @default.
- W2915027494 hasConcept C205649164 @default.
- W2915027494 hasConcept C2780648208 @default.
- W2915027494 hasConcept C33923547 @default.
- W2915027494 hasConcept C39432304 @default.
- W2915027494 hasConcept C41008148 @default.
- W2915027494 hasConcept C4792198 @default.
- W2915027494 hasConcept C58640448 @default.
- W2915027494 hasConcept C62649853 @default.
- W2915027494 hasConcept C81692654 @default.
- W2915027494 hasConceptScore W2915027494C105795698 @default.
- W2915027494 hasConceptScore W2915027494C115961682 @default.
- W2915027494 hasConceptScore W2915027494C127413603 @default.
- W2915027494 hasConceptScore W2915027494C137800194 @default.
- W2915027494 hasConceptScore W2915027494C146978453 @default.
- W2915027494 hasConceptScore W2915027494C147176958 @default.
- W2915027494 hasConceptScore W2915027494C154945302 @default.
- W2915027494 hasConceptScore W2915027494C160633673 @default.
- W2915027494 hasConceptScore W2915027494C161840515 @default.
- W2915027494 hasConceptScore W2915027494C19269812 @default.
- W2915027494 hasConceptScore W2915027494C205649164 @default.
- W2915027494 hasConceptScore W2915027494C2780648208 @default.
- W2915027494 hasConceptScore W2915027494C33923547 @default.
- W2915027494 hasConceptScore W2915027494C39432304 @default.
- W2915027494 hasConceptScore W2915027494C41008148 @default.
- W2915027494 hasConceptScore W2915027494C4792198 @default.
- W2915027494 hasConceptScore W2915027494C58640448 @default.
- W2915027494 hasConceptScore W2915027494C62649853 @default.