Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915051844> ?p ?o ?g. }
- W2915051844 endingPage "75" @default.
- W2915051844 startingPage "65" @default.
- W2915051844 abstract "Abstract Patients face difficulties identifying appropriate doctors owing to the sizeable quantity and uneven quality of information in online healthcare communities. In studying physician searches, researchers often focus on expertise similarity matches and sentiment analyses of reviews. However, the quality is often ignored. To address patients' information needs holistically, we propose a four-dimensional IT framework based on signaling theory. The model takes expertise knowledge, online reviews, profile descriptions (e.g., hospital reputation, number of patients, city) and service quality (e.g., response speed, interaction frequency, cost) as signals that distinguish high-quality physicians. It uses machine learning approaches to derive similarity matches and sentiment analysis. It also measures the relative importance of the signals by multi-criterion analysis and derives the physician rankings through the aggregated scores. Our study revealed that the proposed approach performs better compared with the other two recommend techniques. This research expands the boundary of signaling theory to healthcare management and enriches the literature on IT use and inter-organizational systems. The proposed IT model may improve patient care, alleviate the physician-patient relationship and reduce lawsuits against hospitals; it also has practical implications for healthcare management." @default.
- W2915051844 created "2019-02-21" @default.
- W2915051844 creator A5025047715 @default.
- W2915051844 creator A5066595006 @default.
- W2915051844 creator A5066867077 @default.
- W2915051844 creator A5082246965 @default.
- W2915051844 date "2019-08-01" @default.
- W2915051844 modified "2023-09-30" @default.
- W2915051844 title "A hybrid IT framework for identifying high-quality physicians using big data analytics" @default.
- W2915051844 cites W1502487491 @default.
- W2915051844 cites W1592924546 @default.
- W2915051844 cites W1977036593 @default.
- W2915051844 cites W1981718292 @default.
- W2915051844 cites W1982360004 @default.
- W2915051844 cites W1986066158 @default.
- W2915051844 cites W1988917059 @default.
- W2915051844 cites W1989298268 @default.
- W2915051844 cites W2000743311 @default.
- W2915051844 cites W2003170960 @default.
- W2915051844 cites W2003381146 @default.
- W2915051844 cites W2008039711 @default.
- W2915051844 cites W2010058833 @default.
- W2915051844 cites W2012981759 @default.
- W2915051844 cites W2014399712 @default.
- W2915051844 cites W2016207542 @default.
- W2915051844 cites W2016657021 @default.
- W2915051844 cites W2016714167 @default.
- W2915051844 cites W2022980585 @default.
- W2915051844 cites W2028791093 @default.
- W2915051844 cites W2039144535 @default.
- W2915051844 cites W2045129355 @default.
- W2915051844 cites W2045599215 @default.
- W2915051844 cites W2057541955 @default.
- W2915051844 cites W2059144060 @default.
- W2915051844 cites W2064334160 @default.
- W2915051844 cites W2064842354 @default.
- W2915051844 cites W2072645699 @default.
- W2915051844 cites W2087502381 @default.
- W2915051844 cites W2091161410 @default.
- W2915051844 cites W2107571014 @default.
- W2915051844 cites W2116557008 @default.
- W2915051844 cites W2122811503 @default.
- W2915051844 cites W2133854105 @default.
- W2915051844 cites W2143511849 @default.
- W2915051844 cites W2146217571 @default.
- W2915051844 cites W2149408458 @default.
- W2915051844 cites W2150290401 @default.
- W2915051844 cites W2152630592 @default.
- W2915051844 cites W2171960770 @default.
- W2915051844 cites W2179200719 @default.
- W2915051844 cites W2237198746 @default.
- W2915051844 cites W2261525379 @default.
- W2915051844 cites W2269531456 @default.
- W2915051844 cites W2277897549 @default.
- W2915051844 cites W2290004280 @default.
- W2915051844 cites W2341071282 @default.
- W2915051844 cites W2405939335 @default.
- W2915051844 cites W2460619086 @default.
- W2915051844 cites W2470527509 @default.
- W2915051844 cites W2475173326 @default.
- W2915051844 cites W2485241644 @default.
- W2915051844 cites W2521720213 @default.
- W2915051844 cites W2540776916 @default.
- W2915051844 cites W2546036800 @default.
- W2915051844 cites W2551379735 @default.
- W2915051844 cites W2558432421 @default.
- W2915051844 cites W2615243427 @default.
- W2915051844 cites W2622727030 @default.
- W2915051844 cites W2729974188 @default.
- W2915051844 cites W2733220491 @default.
- W2915051844 cites W2735056142 @default.
- W2915051844 cites W2751018680 @default.
- W2915051844 cites W2752139573 @default.
- W2915051844 cites W2760962259 @default.
- W2915051844 cites W2763473974 @default.
- W2915051844 cites W2765564498 @default.
- W2915051844 cites W2783019787 @default.
- W2915051844 cites W2783804852 @default.
- W2915051844 cites W2794877417 @default.
- W2915051844 cites W2803201508 @default.
- W2915051844 cites W2883230768 @default.
- W2915051844 cites W2884801835 @default.
- W2915051844 cites W3121659628 @default.
- W2915051844 cites W3149048782 @default.
- W2915051844 cites W4229854121 @default.
- W2915051844 cites W856962312 @default.
- W2915051844 cites W947581080 @default.
- W2915051844 cites W2797189500 @default.
- W2915051844 doi "https://doi.org/10.1016/j.ijinfomgt.2019.01.005" @default.
- W2915051844 hasPublicationYear "2019" @default.
- W2915051844 type Work @default.
- W2915051844 sameAs 2915051844 @default.
- W2915051844 citedByCount "36" @default.
- W2915051844 countsByYear W29150518442019 @default.
- W2915051844 countsByYear W29150518442020 @default.
- W2915051844 countsByYear W29150518442021 @default.
- W2915051844 countsByYear W29150518442022 @default.
- W2915051844 countsByYear W29150518442023 @default.