Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915070004> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2915070004 abstract "The research presents a depth-image based automatic object segmentation for chroma key editing in multimedia applications. Depth data taken from advanced depth data capturing devices like Microsoft Kinect has a key role in this research. The proposed approach uses both color and depth data and this hybrid segmentation generates results with clear foreground object boundaries. The present system is exclusively designed for segmenting human subjects from a chroma keyed scene. An Aggregate Channel Feature (ACF) based human detection is also employed here to eliminate false detection due to other foreground objects. The depth data results in dark regions may create small errors over edge pixel segmentation. So, the whole process is carried through a sequence of image processing techniques. The pixels nearby the head portion first restored using K-means clustering and then a coarse level segmentation of the human subjects is obtained using Fuzzy C means segmentation. A color characteristic-based segmentation us used here to eliminate most of the background pixels from the foreground subjects. After this coarse level segmentation, an adaptive Tri-map generation is employed and the ultimate fine level segmentation is achieved using Grab-cut Segmentation to generate the foreground human subjects with accurate edge boundaries for matting chroma keyed images/frames. Experimental results validate the segmentation results and its ability for an error free automated segmentation in editing chroma keyed images or video" @default.
- W2915070004 created "2019-02-21" @default.
- W2915070004 creator A5009423697 @default.
- W2915070004 creator A5022833997 @default.
- W2915070004 creator A5088734009 @default.
- W2915070004 date "2018-11-01" @default.
- W2915070004 modified "2023-10-03" @default.
- W2915070004 title "Depth Data based Chroma Keying using Grab-cut Segmentation" @default.
- W2915070004 cites W1495749723 @default.
- W2915070004 cites W1846524963 @default.
- W2915070004 cites W1983974932 @default.
- W2915070004 cites W1995450389 @default.
- W2915070004 cites W1998399571 @default.
- W2915070004 cites W2000825879 @default.
- W2915070004 cites W2017885543 @default.
- W2915070004 cites W2031369821 @default.
- W2915070004 cites W2043459391 @default.
- W2915070004 cites W2072341116 @default.
- W2915070004 cites W2123701509 @default.
- W2915070004 cites W2124351162 @default.
- W2915070004 cites W2132985428 @default.
- W2915070004 cites W2134089414 @default.
- W2915070004 cites W2135246500 @default.
- W2915070004 cites W2153036496 @default.
- W2915070004 cites W2155904486 @default.
- W2915070004 cites W2161969291 @default.
- W2915070004 cites W22090881 @default.
- W2915070004 cites W2289326956 @default.
- W2915070004 cites W2294656809 @default.
- W2915070004 cites W2344532017 @default.
- W2915070004 cites W2417254599 @default.
- W2915070004 cites W2465449307 @default.
- W2915070004 cites W2513742795 @default.
- W2915070004 cites W2520115596 @default.
- W2915070004 cites W2574028767 @default.
- W2915070004 cites W2576506276 @default.
- W2915070004 cites W2586521908 @default.
- W2915070004 cites W2613525176 @default.
- W2915070004 cites W2737387466 @default.
- W2915070004 cites W2744680710 @default.
- W2915070004 cites W72365246 @default.
- W2915070004 cites W976039271 @default.
- W2915070004 cites W3141571978 @default.
- W2915070004 doi "https://doi.org/10.1109/ic3ina.2018.8629501" @default.
- W2915070004 hasPublicationYear "2018" @default.
- W2915070004 type Work @default.
- W2915070004 sameAs 2915070004 @default.
- W2915070004 citedByCount "0" @default.
- W2915070004 crossrefType "proceedings-article" @default.
- W2915070004 hasAuthorship W2915070004A5009423697 @default.
- W2915070004 hasAuthorship W2915070004A5022833997 @default.
- W2915070004 hasAuthorship W2915070004A5088734009 @default.
- W2915070004 hasConcept C124504099 @default.
- W2915070004 hasConcept C153180895 @default.
- W2915070004 hasConcept C154945302 @default.
- W2915070004 hasConcept C160633673 @default.
- W2915070004 hasConcept C25694479 @default.
- W2915070004 hasConcept C31972630 @default.
- W2915070004 hasConcept C41008148 @default.
- W2915070004 hasConcept C65885262 @default.
- W2915070004 hasConcept C67561299 @default.
- W2915070004 hasConcept C73555534 @default.
- W2915070004 hasConcept C89600930 @default.
- W2915070004 hasConceptScore W2915070004C124504099 @default.
- W2915070004 hasConceptScore W2915070004C153180895 @default.
- W2915070004 hasConceptScore W2915070004C154945302 @default.
- W2915070004 hasConceptScore W2915070004C160633673 @default.
- W2915070004 hasConceptScore W2915070004C25694479 @default.
- W2915070004 hasConceptScore W2915070004C31972630 @default.
- W2915070004 hasConceptScore W2915070004C41008148 @default.
- W2915070004 hasConceptScore W2915070004C65885262 @default.
- W2915070004 hasConceptScore W2915070004C67561299 @default.
- W2915070004 hasConceptScore W2915070004C73555534 @default.
- W2915070004 hasConceptScore W2915070004C89600930 @default.
- W2915070004 hasLocation W29150700041 @default.
- W2915070004 hasOpenAccess W2915070004 @default.
- W2915070004 hasPrimaryLocation W29150700041 @default.
- W2915070004 hasRelatedWork W1514982293 @default.
- W2915070004 hasRelatedWork W1966939940 @default.
- W2915070004 hasRelatedWork W2058068873 @default.
- W2915070004 hasRelatedWork W2108989806 @default.
- W2915070004 hasRelatedWork W2154333700 @default.
- W2915070004 hasRelatedWork W2165979125 @default.
- W2915070004 hasRelatedWork W2170302272 @default.
- W2915070004 hasRelatedWork W2212329603 @default.
- W2915070004 hasRelatedWork W2382738934 @default.
- W2915070004 hasRelatedWork W2739874619 @default.
- W2915070004 isParatext "false" @default.
- W2915070004 isRetracted "false" @default.
- W2915070004 magId "2915070004" @default.
- W2915070004 workType "article" @default.