Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915072818> ?p ?o ?g. }
- W2915072818 endingPage "264" @default.
- W2915072818 startingPage "253" @default.
- W2915072818 abstract "Single-nucleotide variants or mutations (e.g., point mutations) are less common than other variations and mutations, and cannot generate observed genomic diversity. Genomic elements such as short tandem repeats, ribosomal RNA gene arrays, or transposable elements have extremely high mutation rates that likely contribute most mutations in eukaryotic genomes. These high-rate elements are very diverse and their importance depends on their biological context. For example, in prokaryotes the more important such elements are plasmids and integrative and conjugative elements. Functional elements with very high mutation rates behave very differently than functional elements with low mutation rates in evolution. Specifically, the same mutation can occur multiple times in different lineages, and evolution is no longer mutation-limited. Extant genomes are largely shaped by global transposition, copy-number fluctuation, and rearrangement of DNA sequences rather than by substitutions of single nucleotides. Although many of these large-scale mutations have low probabilities and are unlikely to repeat, others are recurrent or predictable in their effects, leading to stereotyped genome architectures and genetic variation in both eukaryotes and prokaryotes. Such recurrent, parallel mutation modes can profoundly shape the paths taken by evolution and undermine common models of evolutionary genetics. Similar patterns are also evident at the smaller scales of individual genes or short sequences. The scale and extent of this ‘non-substitution’ variation has recently come into focus through the advent of new genomic technologies; however, it is still not widely considered in genotype–phenotype association studies. In this review we identify common features of these disparate mutational phenomena and comment on the importance and interpretation of these mutational patterns. Extant genomes are largely shaped by global transposition, copy-number fluctuation, and rearrangement of DNA sequences rather than by substitutions of single nucleotides. Although many of these large-scale mutations have low probabilities and are unlikely to repeat, others are recurrent or predictable in their effects, leading to stereotyped genome architectures and genetic variation in both eukaryotes and prokaryotes. Such recurrent, parallel mutation modes can profoundly shape the paths taken by evolution and undermine common models of evolutionary genetics. Similar patterns are also evident at the smaller scales of individual genes or short sequences. The scale and extent of this ‘non-substitution’ variation has recently come into focus through the advent of new genomic technologies; however, it is still not widely considered in genotype–phenotype association studies. In this review we identify common features of these disparate mutational phenomena and comment on the importance and interpretation of these mutational patterns. when favorable mutations occur in populations, they tend to increase in frequency over time until they dominate the population as a result of positive selection. In hard sweeps, positive selection is very strong and the mutation goes to fixation very quickly. In soft sweeps, selection is weaker and multiple mutations are simultaneously under positive selection, leading to complex population dynamics which are more difficult to detect and interpret. a model of molecular evolution under which it is assumed that all mutations take place at different sites. Under this assumption, parallel (or recurrent) mutation does not occur. This condition is satisfied by simply assuming that the number of sites in the genome is infinite, while keeping the mutation rate constant, such that the probability of mutation at any specific site becomes infinitesimally small. a mutation that occurs at the same locus as another previous mutation, but independently from the same starting allele, usually in different genetic lineages. Mutations at the same locus in the same lineage are called ‘stepwise’ mutations. the total number of mutations arising across the entire population of an organism. Either a larger population or a higher rate of per-locus mutation can increase this measure. Sometimes written as θ. regions of genomes consisting of many copies of ribosomal RNA genes, which vary dramatically in copy number across species and individuals while remaining conserved in the sequence of each gene. regions of DNA consisting of tandemly repeated DNA sequences at high copy number. This copy number mutates rapidly. Genomic regions such as telomeres and centromeres tend to consist of satellite DNA. Short tandem repeats (STRs), also called microsatellites, consist of very short repeat units (<10 nt). a mutation that replaces a nucleotide at a single position (A, C, G, T) with one of the other three nucleotides. DNA elements that reproduce themselves in genomes via ‘cut-and-paste’ or ‘copy-and-paste’ mechanisms, leading to large insertions and deletions of DNA. Sometimes called ‘selfish DNA’ or ‘jumping genes’." @default.
- W2915072818 created "2019-03-02" @default.
- W2915072818 creator A5049813467 @default.
- W2915072818 creator A5050779824 @default.
- W2915072818 creator A5084831697 @default.
- W2915072818 creator A5091676211 @default.
- W2915072818 date "2019-04-01" @default.
- W2915072818 modified "2023-10-12" @default.
- W2915072818 title "Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation Rates" @default.
- W2915072818 cites W1627352199 @default.
- W2915072818 cites W1778910066 @default.
- W2915072818 cites W1851718497 @default.
- W2915072818 cites W1963578989 @default.
- W2915072818 cites W1967134681 @default.
- W2915072818 cites W1974518541 @default.
- W2915072818 cites W1978040768 @default.
- W2915072818 cites W1988001504 @default.
- W2915072818 cites W1991545468 @default.
- W2915072818 cites W1992613346 @default.
- W2915072818 cites W1993351732 @default.
- W2915072818 cites W1996468809 @default.
- W2915072818 cites W1997758697 @default.
- W2915072818 cites W2002508113 @default.
- W2915072818 cites W2008080212 @default.
- W2915072818 cites W2008677609 @default.
- W2915072818 cites W2012980277 @default.
- W2915072818 cites W2020752056 @default.
- W2915072818 cites W2020784233 @default.
- W2915072818 cites W2025202959 @default.
- W2915072818 cites W2029423438 @default.
- W2915072818 cites W2033718613 @default.
- W2915072818 cites W2034525444 @default.
- W2915072818 cites W2043257091 @default.
- W2915072818 cites W2049883153 @default.
- W2915072818 cites W2054138680 @default.
- W2915072818 cites W2054810412 @default.
- W2915072818 cites W2054911488 @default.
- W2915072818 cites W2055595349 @default.
- W2915072818 cites W2057926030 @default.
- W2915072818 cites W2058632246 @default.
- W2915072818 cites W2064512698 @default.
- W2915072818 cites W2064947972 @default.
- W2915072818 cites W2066535854 @default.
- W2915072818 cites W2072854841 @default.
- W2915072818 cites W2075427572 @default.
- W2915072818 cites W2075610199 @default.
- W2915072818 cites W2076124986 @default.
- W2915072818 cites W2090139400 @default.
- W2915072818 cites W2094902224 @default.
- W2915072818 cites W2096052762 @default.
- W2915072818 cites W2097822523 @default.
- W2915072818 cites W2101599114 @default.
- W2915072818 cites W2104093114 @default.
- W2915072818 cites W2111012231 @default.
- W2915072818 cites W2114179812 @default.
- W2915072818 cites W2117737648 @default.
- W2915072818 cites W2117925179 @default.
- W2915072818 cites W2119606554 @default.
- W2915072818 cites W2121275394 @default.
- W2915072818 cites W2124007843 @default.
- W2915072818 cites W2124420957 @default.
- W2915072818 cites W2124561138 @default.
- W2915072818 cites W2127229045 @default.
- W2915072818 cites W2142402047 @default.
- W2915072818 cites W2145406188 @default.
- W2915072818 cites W2147660889 @default.
- W2915072818 cites W2149947954 @default.
- W2915072818 cites W2150158948 @default.
- W2915072818 cites W2152749315 @default.
- W2915072818 cites W2163003877 @default.
- W2915072818 cites W2163949203 @default.
- W2915072818 cites W2165202907 @default.
- W2915072818 cites W2165406466 @default.
- W2915072818 cites W2168475193 @default.
- W2915072818 cites W2170568588 @default.
- W2915072818 cites W2227356030 @default.
- W2915072818 cites W2290520251 @default.
- W2915072818 cites W2330659059 @default.
- W2915072818 cites W2339157748 @default.
- W2915072818 cites W2409013835 @default.
- W2915072818 cites W2427792855 @default.
- W2915072818 cites W2468803195 @default.
- W2915072818 cites W2490409064 @default.
- W2915072818 cites W2507829835 @default.
- W2915072818 cites W2514286513 @default.
- W2915072818 cites W2529873061 @default.
- W2915072818 cites W2531780971 @default.
- W2915072818 cites W2580012258 @default.
- W2915072818 cites W2587990010 @default.
- W2915072818 cites W2593885611 @default.
- W2915072818 cites W2623168030 @default.
- W2915072818 cites W2694636033 @default.
- W2915072818 cites W2733832119 @default.
- W2915072818 cites W2752006971 @default.
- W2915072818 cites W2755903087 @default.
- W2915072818 cites W2760826592 @default.
- W2915072818 cites W2766779217 @default.
- W2915072818 cites W2779273469 @default.