Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915130817> ?p ?o ?g. }
- W2915130817 endingPage "89" @default.
- W2915130817 startingPage "78" @default.
- W2915130817 abstract "Aerosol optical depth (AOD) is an important parameter characterizing the optical properties of atmospheric aerosols and can be used to indicate aerosol loading and evaluate air quality. In this study, a FY-3/medium-resolution spectral imager (MERSI) AOD data assimilation (DA) system was developed using a three-dimensional variational DA method to assess the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts. Two typical sand-dust weather events occurred during the spring season of years 2010 and 2011 were selected as case study. The DA system and Weather Research and Forecasting model coupled with a chemical model (WRF-Chem) were used to evaluate the impacts of FY-3/MERSI AOD DA on air quality forecasts. This was based on comparisons between modeled AOD data and AOD data acquired by the Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites. Results from both case studies revealed that FY-3/MERSI AOD DA apparently improved the air quality forecasts. Key findings of the FY-3/MERSI AOD DA experiments included: (1) FY-3/MERSI AOD DA adjusted the simulated aerosol particle content of the WRF-Chem model and efficiently improved the extinction coefficient fields below 500 hPa. Moreover, AOD DA had the strongest effect on adjusting the extinction coefficients at 750 hPa (approximately 2 km). Compared with the AOD background field, the AOD analysis field was similar to the satellite observation field. (2) Compared with the control experiments without DA, the AOD DA experiment produced more accurate 24-h AOD forecasts, more consistent with the AERONET and satellite observations. (3) Due to the spatial distribution and intensity difference of satellite AOD data, satellite AOD data assimilation has obvious individual characteristics for the improvement of particle concentration prediction. Our study findings suggest that the developed DA system can facilitate the effective use of AOD data acquired by Chinese satellites in air quality forecasting models and can improve dust forecasting results." @default.
- W2915130817 created "2019-03-02" @default.
- W2915130817 creator A5023468459 @default.
- W2915130817 creator A5024019310 @default.
- W2915130817 creator A5029998532 @default.
- W2915130817 creator A5043951109 @default.
- W2915130817 creator A5048503739 @default.
- W2915130817 creator A5054738516 @default.
- W2915130817 creator A5056546946 @default.
- W2915130817 creator A5064145516 @default.
- W2915130817 creator A5073858006 @default.
- W2915130817 creator A5084073771 @default.
- W2915130817 creator A5084743922 @default.
- W2915130817 creator A5088959230 @default.
- W2915130817 creator A5090242641 @default.
- W2915130817 date "2019-05-01" @default.
- W2915130817 modified "2023-10-15" @default.
- W2915130817 title "Assessing the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in northeast China" @default.
- W2915130817 cites W1503451270 @default.
- W2915130817 cites W1539644343 @default.
- W2915130817 cites W1563497780 @default.
- W2915130817 cites W1902179277 @default.
- W2915130817 cites W1963978692 @default.
- W2915130817 cites W1970047006 @default.
- W2915130817 cites W1974363686 @default.
- W2915130817 cites W1990892858 @default.
- W2915130817 cites W1993512681 @default.
- W2915130817 cites W2013376231 @default.
- W2915130817 cites W2016814698 @default.
- W2915130817 cites W2017585618 @default.
- W2915130817 cites W2040620579 @default.
- W2915130817 cites W2058057617 @default.
- W2915130817 cites W2073657720 @default.
- W2915130817 cites W2075599719 @default.
- W2915130817 cites W2078223467 @default.
- W2915130817 cites W2079699162 @default.
- W2915130817 cites W2082426215 @default.
- W2915130817 cites W2088012374 @default.
- W2915130817 cites W2089433206 @default.
- W2915130817 cites W2092548950 @default.
- W2915130817 cites W2097559174 @default.
- W2915130817 cites W2097977585 @default.
- W2915130817 cites W2108162680 @default.
- W2915130817 cites W2121690346 @default.
- W2915130817 cites W2121946490 @default.
- W2915130817 cites W2125992256 @default.
- W2915130817 cites W2130042267 @default.
- W2915130817 cites W2136408596 @default.
- W2915130817 cites W2145265567 @default.
- W2915130817 cites W2145906726 @default.
- W2915130817 cites W2146061402 @default.
- W2915130817 cites W2158426942 @default.
- W2915130817 cites W2165191647 @default.
- W2915130817 cites W2168314263 @default.
- W2915130817 cites W2172819965 @default.
- W2915130817 cites W2299726587 @default.
- W2915130817 cites W2519497602 @default.
- W2915130817 cites W2624502536 @default.
- W2915130817 cites W2756099897 @default.
- W2915130817 cites W2758564043 @default.
- W2915130817 cites W2784380241 @default.
- W2915130817 doi "https://doi.org/10.1016/j.atmosenv.2019.02.026" @default.
- W2915130817 hasPublicationYear "2019" @default.
- W2915130817 type Work @default.
- W2915130817 sameAs 2915130817 @default.
- W2915130817 citedByCount "15" @default.
- W2915130817 countsByYear W29151308172019 @default.
- W2915130817 countsByYear W29151308172020 @default.
- W2915130817 countsByYear W29151308172021 @default.
- W2915130817 countsByYear W29151308172022 @default.
- W2915130817 countsByYear W29151308172023 @default.
- W2915130817 crossrefType "journal-article" @default.
- W2915130817 hasAuthorship W2915130817A5023468459 @default.
- W2915130817 hasAuthorship W2915130817A5024019310 @default.
- W2915130817 hasAuthorship W2915130817A5029998532 @default.
- W2915130817 hasAuthorship W2915130817A5043951109 @default.
- W2915130817 hasAuthorship W2915130817A5048503739 @default.
- W2915130817 hasAuthorship W2915130817A5054738516 @default.
- W2915130817 hasAuthorship W2915130817A5056546946 @default.
- W2915130817 hasAuthorship W2915130817A5064145516 @default.
- W2915130817 hasAuthorship W2915130817A5073858006 @default.
- W2915130817 hasAuthorship W2915130817A5084073771 @default.
- W2915130817 hasAuthorship W2915130817A5084743922 @default.
- W2915130817 hasAuthorship W2915130817A5088959230 @default.
- W2915130817 hasAuthorship W2915130817A5090242641 @default.
- W2915130817 hasConcept C126314574 @default.
- W2915130817 hasConcept C127313418 @default.
- W2915130817 hasConcept C127413603 @default.
- W2915130817 hasConcept C133204551 @default.
- W2915130817 hasConcept C146978453 @default.
- W2915130817 hasConcept C153294291 @default.
- W2915130817 hasConcept C19269812 @default.
- W2915130817 hasConcept C205649164 @default.
- W2915130817 hasConcept C24552861 @default.
- W2915130817 hasConcept C2777007095 @default.
- W2915130817 hasConcept C2777634575 @default.
- W2915130817 hasConcept C2779345167 @default.
- W2915130817 hasConcept C39432304 @default.