Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915250048> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2915250048 endingPage "757" @default.
- W2915250048 startingPage "757" @default.
- W2915250048 abstract "We address in this paper the problem of abnormal event detection in video-surveillance. In this context, we use only normal events as training samples. We propose to use a modified version of pretrained 3D residual convolutional network to extract spatio-temporal features, and we develop a robust classifier based on the selection of vectors of interest. It is able to learn the normal behavior model and detect potentially dangerous abnormal events. This unsupervised method prevents the marginalization of normal events that occur rarely during the training phase since it minimizes redundancy information, and adapt to the appearance of new normal events that occur during the testing phase. Experimental results on challenging datasets show the superiority of the proposed method compared to the state of the art in both frame-level and pixel-level in anomaly detection task." @default.
- W2915250048 created "2019-03-02" @default.
- W2915250048 creator A5006546107 @default.
- W2915250048 creator A5047879559 @default.
- W2915250048 creator A5048497639 @default.
- W2915250048 creator A5055782064 @default.
- W2915250048 creator A5066400774 @default.
- W2915250048 date "2019-02-21" @default.
- W2915250048 modified "2023-10-01" @default.
- W2915250048 title "An On-Line and Adaptive Method for Detecting Abnormal Events in Videos Using Spatio-Temporal ConvNet" @default.
- W2915250048 cites W1019830208 @default.
- W2915250048 cites W1967456674 @default.
- W2915250048 cites W1991251598 @default.
- W2915250048 cites W1996118086 @default.
- W2915250048 cites W2015468740 @default.
- W2915250048 cites W2026418062 @default.
- W2915250048 cites W2041390734 @default.
- W2915250048 cites W2092272787 @default.
- W2915250048 cites W2099000909 @default.
- W2915250048 cites W2107323262 @default.
- W2915250048 cites W2110934250 @default.
- W2915250048 cites W2118078536 @default.
- W2915250048 cites W2130349088 @default.
- W2915250048 cites W2139212933 @default.
- W2915250048 cites W2153635508 @default.
- W2915250048 cites W2164261375 @default.
- W2915250048 cites W2170932168 @default.
- W2915250048 cites W2181904953 @default.
- W2915250048 cites W2337453828 @default.
- W2915250048 cites W2460849547 @default.
- W2915250048 cites W2540481276 @default.
- W2915250048 cites W2586702902 @default.
- W2915250048 cites W2587789887 @default.
- W2915250048 cites W2748303136 @default.
- W2915250048 cites W2790979755 @default.
- W2915250048 cites W2963541464 @default.
- W2915250048 doi "https://doi.org/10.3390/app9040757" @default.
- W2915250048 hasPublicationYear "2019" @default.
- W2915250048 type Work @default.
- W2915250048 sameAs 2915250048 @default.
- W2915250048 citedByCount "22" @default.
- W2915250048 countsByYear W29152500482019 @default.
- W2915250048 countsByYear W29152500482020 @default.
- W2915250048 countsByYear W29152500482021 @default.
- W2915250048 countsByYear W29152500482022 @default.
- W2915250048 countsByYear W29152500482023 @default.
- W2915250048 crossrefType "journal-article" @default.
- W2915250048 hasAuthorship W2915250048A5006546107 @default.
- W2915250048 hasAuthorship W2915250048A5047879559 @default.
- W2915250048 hasAuthorship W2915250048A5048497639 @default.
- W2915250048 hasAuthorship W2915250048A5055782064 @default.
- W2915250048 hasAuthorship W2915250048A5066400774 @default.
- W2915250048 hasBestOaLocation W29152500481 @default.
- W2915250048 hasConcept C111919701 @default.
- W2915250048 hasConcept C11413529 @default.
- W2915250048 hasConcept C119857082 @default.
- W2915250048 hasConcept C152124472 @default.
- W2915250048 hasConcept C153180895 @default.
- W2915250048 hasConcept C154945302 @default.
- W2915250048 hasConcept C155512373 @default.
- W2915250048 hasConcept C41008148 @default.
- W2915250048 hasConcept C739882 @default.
- W2915250048 hasConcept C95623464 @default.
- W2915250048 hasConceptScore W2915250048C111919701 @default.
- W2915250048 hasConceptScore W2915250048C11413529 @default.
- W2915250048 hasConceptScore W2915250048C119857082 @default.
- W2915250048 hasConceptScore W2915250048C152124472 @default.
- W2915250048 hasConceptScore W2915250048C153180895 @default.
- W2915250048 hasConceptScore W2915250048C154945302 @default.
- W2915250048 hasConceptScore W2915250048C155512373 @default.
- W2915250048 hasConceptScore W2915250048C41008148 @default.
- W2915250048 hasConceptScore W2915250048C739882 @default.
- W2915250048 hasConceptScore W2915250048C95623464 @default.
- W2915250048 hasIssue "4" @default.
- W2915250048 hasLocation W29152500481 @default.
- W2915250048 hasLocation W29152500482 @default.
- W2915250048 hasLocation W29152500483 @default.
- W2915250048 hasOpenAccess W2915250048 @default.
- W2915250048 hasPrimaryLocation W29152500481 @default.
- W2915250048 hasRelatedWork W2076520961 @default.
- W2915250048 hasRelatedWork W2167582322 @default.
- W2915250048 hasRelatedWork W2556319748 @default.
- W2915250048 hasRelatedWork W2563096758 @default.
- W2915250048 hasRelatedWork W2742991909 @default.
- W2915250048 hasRelatedWork W2793367532 @default.
- W2915250048 hasRelatedWork W2961085424 @default.
- W2915250048 hasRelatedWork W2972035100 @default.
- W2915250048 hasRelatedWork W4386053843 @default.
- W2915250048 hasRelatedWork W3158004940 @default.
- W2915250048 hasVolume "9" @default.
- W2915250048 isParatext "false" @default.
- W2915250048 isRetracted "false" @default.
- W2915250048 magId "2915250048" @default.
- W2915250048 workType "article" @default.