Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915264372> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2915264372 abstract "Defining the meaning of vague quantifiers (‘few’, ‘most’, ‘all’) has been, and still is, the Holy Grail of a mare magnum of studies in philosophy, logic, and linguistics. The way by which they are learned by children has been largely investigated in the realm of language acquisition, and the mechanisms underlying their comprehension and processing have received attention from experimental pragmatics, cognitive psychology, and neuroscience. Very often their meaning has been tied to that of numbers, amounts, and proportions, and many attempts have been made to place them on ordered scales.In this thesis, I study quantifiers from a novel, cognitively-inspired computational perspective. By carrying out several behavioral studies with human speakers, I seek to answer several questions concerning their meaning and use: Is the choice of quantifiers modulated by the linguistic context? Do quantifiers lie on a mental, semantically-ordered scale? Which are the features of such a scale? By exploiting recent advances in computational linguistics and computer vision, I test the performance of state-of-art neural networks in performing the same tasks and propose novel architectures to model speakers’ use of quantifiers in grounded contexts. In particular, I ask the following questions: Can the meaning of quantifiers be learned from visual scenes? How does this mechanism compare with that subtending comparatives, numbers, and proportions?The contribution of this work is two-fold: On the cognitive level, it sheds new light on various issues concerning the meaning and use of such expressions, and provides experimental evidence supporting the validity of the foundational theories. On the computational level, it proposes a novel, theoretically-informed approach to the modeling of vague and context-dependent expressions from both linguistic and visual data. By carefully analyzing the performance and errors of the models, I show the effectiveness of neural networks in performing challenging, high-level tasks. At the same time, I highlight commonalities and differences with human behavior." @default.
- W2915264372 created "2019-03-02" @default.
- W2915264372 creator A5007142536 @default.
- W2915264372 date "2018-12-04" @default.
- W2915264372 modified "2023-09-27" @default.
- W2915264372 title "Learning the Meaning of Quantifiers from Language and Vision" @default.
- W2915264372 hasPublicationYear "2018" @default.
- W2915264372 type Work @default.
- W2915264372 sameAs 2915264372 @default.
- W2915264372 citedByCount "0" @default.
- W2915264372 crossrefType "dissertation" @default.
- W2915264372 hasAuthorship W2915264372A5007142536 @default.
- W2915264372 hasConcept C11693617 @default.
- W2915264372 hasConcept C138885662 @default.
- W2915264372 hasConcept C151730666 @default.
- W2915264372 hasConcept C15744967 @default.
- W2915264372 hasConcept C180747234 @default.
- W2915264372 hasConcept C188147891 @default.
- W2915264372 hasConcept C2779343474 @default.
- W2915264372 hasConcept C2780876879 @default.
- W2915264372 hasConcept C41008148 @default.
- W2915264372 hasConcept C41895202 @default.
- W2915264372 hasConcept C511192102 @default.
- W2915264372 hasConcept C542102704 @default.
- W2915264372 hasConcept C86803240 @default.
- W2915264372 hasConceptScore W2915264372C11693617 @default.
- W2915264372 hasConceptScore W2915264372C138885662 @default.
- W2915264372 hasConceptScore W2915264372C151730666 @default.
- W2915264372 hasConceptScore W2915264372C15744967 @default.
- W2915264372 hasConceptScore W2915264372C180747234 @default.
- W2915264372 hasConceptScore W2915264372C188147891 @default.
- W2915264372 hasConceptScore W2915264372C2779343474 @default.
- W2915264372 hasConceptScore W2915264372C2780876879 @default.
- W2915264372 hasConceptScore W2915264372C41008148 @default.
- W2915264372 hasConceptScore W2915264372C41895202 @default.
- W2915264372 hasConceptScore W2915264372C511192102 @default.
- W2915264372 hasConceptScore W2915264372C542102704 @default.
- W2915264372 hasConceptScore W2915264372C86803240 @default.
- W2915264372 hasLocation W29152643721 @default.
- W2915264372 hasOpenAccess W2915264372 @default.
- W2915264372 hasPrimaryLocation W29152643721 @default.
- W2915264372 hasRelatedWork W1013670379 @default.
- W2915264372 hasRelatedWork W116492544 @default.
- W2915264372 hasRelatedWork W161303224 @default.
- W2915264372 hasRelatedWork W174412603 @default.
- W2915264372 hasRelatedWork W1751837507 @default.
- W2915264372 hasRelatedWork W1987220256 @default.
- W2915264372 hasRelatedWork W2187973009 @default.
- W2915264372 hasRelatedWork W2469213146 @default.
- W2915264372 hasRelatedWork W2490166189 @default.
- W2915264372 hasRelatedWork W2568967126 @default.
- W2915264372 hasRelatedWork W2589587021 @default.
- W2915264372 hasRelatedWork W2617651980 @default.
- W2915264372 hasRelatedWork W2766275165 @default.
- W2915264372 hasRelatedWork W2768372964 @default.
- W2915264372 hasRelatedWork W2889565903 @default.
- W2915264372 hasRelatedWork W2904870187 @default.
- W2915264372 hasRelatedWork W2919462357 @default.
- W2915264372 hasRelatedWork W590782318 @default.
- W2915264372 hasRelatedWork W68383107 @default.
- W2915264372 hasRelatedWork W2553404722 @default.
- W2915264372 isParatext "false" @default.
- W2915264372 isRetracted "false" @default.
- W2915264372 magId "2915264372" @default.
- W2915264372 workType "dissertation" @default.