Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915536369> ?p ?o ?g. }
- W2915536369 endingPage "1" @default.
- W2915536369 startingPage "1" @default.
- W2915536369 abstract "Land-cover classification using remote sensing imagery is an important part of environmental research because it provides baseline information for ecological vulnerability and risk assessment, disaster management, landscape conservation, local and regional planning, and so on. Rural-land-cover classification is challenging for both object-based image analysis methods and classifiers. The objective of this study is to improve the object-oriented classification accuracy of rural land cover by combining two models based on high spatial resolution imagery. We apply the C5.0 algorithm in R to combine support vector machines (SVMs) and random forest (RF) to create the model RS_C5.0. The effectiveness of the model combination is assessed by comparing the classification results with the state-of-the-art machine learning algorithm, namely extreme gradient boosting (XGBoost). The comparisons are done based on the classification results of both the study area and the case area. Results show that in the classification of the study area, RF performs slightly better than SVM, and XGBoost performs worse than RF but better than SVM. However, in the classification of the case area, SVM performs slightly better than RF and both SVM and RF perform better than XGBoost. Furthermore, RS_C5.0 obtains the highest overall accuracies and kappa coefficients in the classifications of both the study area and the case area. In terms of training time, XGBoost runs the slowest in the classifications of both the study area and the case area. SVM and RF as well as the combined model (RS_C5.0) run much faster than XGBoost classifier. To summarize, the combination of SVM and RF classifiers using C5.0 algorithm is found to be a fast and effective way to improve rural-land-cover classification." @default.
- W2915536369 created "2019-03-02" @default.
- W2915536369 creator A5013116707 @default.
- W2915536369 creator A5021650261 @default.
- W2915536369 creator A5027343202 @default.
- W2915536369 creator A5047787099 @default.
- W2915536369 creator A5055213066 @default.
- W2915536369 creator A5079555682 @default.
- W2915536369 date "2019-02-23" @default.
- W2915536369 modified "2023-10-02" @default.
- W2915536369 title "Combining random forest and support vector machines for object-based rural-land-cover classification using high spatial resolution imagery" @default.
- W2915536369 cites W1554190159 @default.
- W2915536369 cites W1555328055 @default.
- W2915536369 cites W1565635109 @default.
- W2915536369 cites W1905063986 @default.
- W2915536369 cites W1964262728 @default.
- W2915536369 cites W1971653980 @default.
- W2915536369 cites W1980547211 @default.
- W2915536369 cites W1981539283 @default.
- W2915536369 cites W1981755063 @default.
- W2915536369 cites W1984792953 @default.
- W2915536369 cites W1989022844 @default.
- W2915536369 cites W1989919782 @default.
- W2915536369 cites W1991259147 @default.
- W2915536369 cites W1991361881 @default.
- W2915536369 cites W1996061706 @default.
- W2915536369 cites W1998281138 @default.
- W2915536369 cites W2000175358 @default.
- W2915536369 cites W2006203995 @default.
- W2915536369 cites W2011287807 @default.
- W2915536369 cites W2011500029 @default.
- W2915536369 cites W2014555541 @default.
- W2915536369 cites W2015497137 @default.
- W2915536369 cites W2018732570 @default.
- W2915536369 cites W2019504071 @default.
- W2915536369 cites W2022555621 @default.
- W2915536369 cites W2026723939 @default.
- W2915536369 cites W2026952547 @default.
- W2915536369 cites W2037507183 @default.
- W2915536369 cites W2046113982 @default.
- W2915536369 cites W2047825499 @default.
- W2915536369 cites W2052331316 @default.
- W2915536369 cites W2059217921 @default.
- W2915536369 cites W2063907334 @default.
- W2915536369 cites W2067751945 @default.
- W2915536369 cites W2077509829 @default.
- W2915536369 cites W2078878045 @default.
- W2915536369 cites W2081620141 @default.
- W2915536369 cites W2082140503 @default.
- W2915536369 cites W2084166106 @default.
- W2915536369 cites W2089716607 @default.
- W2915536369 cites W2094708176 @default.
- W2915536369 cites W2096568126 @default.
- W2915536369 cites W2099206930 @default.
- W2915536369 cites W2119879130 @default.
- W2915536369 cites W2123746041 @default.
- W2915536369 cites W2130868455 @default.
- W2915536369 cites W2132424470 @default.
- W2915536369 cites W2139741891 @default.
- W2915536369 cites W2148160366 @default.
- W2915536369 cites W2153635508 @default.
- W2915536369 cites W2154074575 @default.
- W2915536369 cites W2167753478 @default.
- W2915536369 cites W2168341506 @default.
- W2915536369 cites W2174692344 @default.
- W2915536369 cites W2261107357 @default.
- W2915536369 cites W2308013991 @default.
- W2915536369 cites W2337128475 @default.
- W2915536369 cites W2388309475 @default.
- W2915536369 cites W2529611393 @default.
- W2915536369 cites W2531168480 @default.
- W2915536369 cites W2533613626 @default.
- W2915536369 cites W2582144242 @default.
- W2915536369 cites W2589780155 @default.
- W2915536369 cites W2618669755 @default.
- W2915536369 cites W2621331406 @default.
- W2915536369 cites W2653148934 @default.
- W2915536369 cites W2775577632 @default.
- W2915536369 cites W2778315739 @default.
- W2915536369 cites W2784208206 @default.
- W2915536369 cites W2802523148 @default.
- W2915536369 cites W3102476541 @default.
- W2915536369 cites W4210330389 @default.
- W2915536369 doi "https://doi.org/10.1117/1.jrs.13.014521" @default.
- W2915536369 hasPublicationYear "2019" @default.
- W2915536369 type Work @default.
- W2915536369 sameAs 2915536369 @default.
- W2915536369 citedByCount "15" @default.
- W2915536369 countsByYear W29155363692020 @default.
- W2915536369 countsByYear W29155363692021 @default.
- W2915536369 countsByYear W29155363692022 @default.
- W2915536369 countsByYear W29155363692023 @default.
- W2915536369 crossrefType "journal-article" @default.
- W2915536369 hasAuthorship W2915536369A5013116707 @default.
- W2915536369 hasAuthorship W2915536369A5021650261 @default.
- W2915536369 hasAuthorship W2915536369A5027343202 @default.
- W2915536369 hasAuthorship W2915536369A5047787099 @default.
- W2915536369 hasAuthorship W2915536369A5055213066 @default.